82 research outputs found

    Hydrogen bonding in Alzheimer's amyloid-β fibrils probed by 15N{17O} REAPDOR solid-state NMR spectroscopy

    Get PDF
    An exclusive label: 15N{17O} REAPDOR NMR was used to validate intermolecular C17O=H-15N hydrogen bonding in Ac-Aβ(16-22)-NH2 (see scheme) and Aβ(11-25) amyloid fibrils, which are associated with Alzheimer's disease, by selectively labeling them with 17O and 15N. This method was effective for confirming the structure of these fibrils, and could be useful for a number of other biological samples. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Exploring the interactions of irbesartan and irbesartan–2-hydroxypropyl-β-cyclodextrin complex with model membranes

    Get PDF
    The interactions of irbesartan (IRB) and irbesartan–2-hydroxypropyl-β-cyclodextrin (HP-β-CD) complex with Dipalmitoyl Phosphatidylcholine (DPPC) bilayers have been explored utilizing an array of biophysical techniques ranging from Differential Scanning Calorimetry (DSC), Small angle X-ray Scattering (SAXS), ESI Mass-Spectrometry (ESI-MS) and solid state Nuclear Magnetic Resonance (ssNMR). Molecular Dynamics (MD) calculations have been also conducted to complement the experimental results. Irbesartan was found to be embedded in the lipid membrane core and to affect the phase transition properties of the DPPC bilayers. SAXS studies revealed that irbesartan alone does not display perfect solvation since some coexisting irbesartan crystallites are present. In its complexed form IRB gets fully solvated in the membranes showing that encapsulation of IRB in HP-β-CD may have beneficial effects in the ADME properties of this drug. MD experiments revealed the topological and orientational integration of irbesartan into the phospholipid bilayer being placed at about 1 nm from the membrane centre

    High-Resolution 3D Structure Determination of Kaliotoxin by Solid-State NMR Spectroscopy

    Get PDF
    High-resolution solid-state NMR spectroscopy can provide structural information of proteins that cannot be studied by X-ray crystallography or solution NMR spectroscopy. Here we demonstrate that it is possible to determine a protein structure by solid-state NMR to a resolution comparable to that by solution NMR. Using an iterative assignment and structure calculation protocol, a large number of distance restraints was extracted from 1H/1H mixing experiments recorded on a single uniformly labeled sample under magic angle spinning conditions. The calculated structure has a coordinate precision of 0.6 Ă… and 1.3 Ă… for the backbone and side chain heavy atoms, respectively, and deviates from the structure observed in solution. The approach is expected to be applicable to larger systems enabling the determination of high-resolution structures of amyloid or membrane proteins

    Distinct Patterns of DNA Damage Response and Apoptosis Correlate with Jak/Stat and PI3Kinase Response Profiles in Human Acute Myelogenous Leukemia

    Get PDF
    BACKGROUND:Single cell network profiling (SCNP) utilizing flow cytometry measures alterations in intracellular signaling responses. Here SCNP was used to characterize Acute Myeloid Leukemia (AML) disease subtypes based on survival, DNA damage response and apoptosis pathways. METHODOLOGY AND PRINCIPAL FINDINGS:Thirty four diagnostic non-M3 AML samples from patients with known clinical outcome were treated with a panel of myeloid growth factors and cytokines, as well as with apoptosis-inducing agents. Analysis of induced Jak/Stat and PI3K pathway responses in blasts from individual patient samples identified subgroups with distinct signaling profiles that were not seen in the absence of a modulator. In vitro exposure of patient samples to etoposide, a DNA damaging agent, revealed three distinct "DNA damage response (DDR)/apoptosis" profiles: 1) AML blasts with a defective DDR and failure to undergo apoptosis; 2) AML blasts with proficient DDR and failure to undergo apoptosis; 3) AML blasts with proficiency in both DDR and apoptosis pathways. Notably, AML samples from clinical responders fell within the "DDR/apoptosis" proficient profile and, as well, had low PI3K and Jak/Stat signaling responses. In contrast, samples from clinical non responders had variable signaling profiles often with in vitro apoptotic failure and elevated PI3K pathway activity. Individual patient samples often harbored multiple, distinct, leukemia-associated cell populations identifiable by their surface marker expression, functional performance of signaling pathway in the face of cytokine or growth factor stimulation, as well as their response to apoptosis-inducing agents. CONCLUSIONS AND SIGNIFICANCE:Characterizing and tracking changes in intracellular pathway profiles in cell subpopulations both at baseline and under therapeutic pressure will likely have important clinical applications, potentially informing the selection of beneficial targeted agents, used either alone or in combination with chemotherapy

    Quick identification of acute chest pain patients study (QICS)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with acute chest pain are often referred to the emergency ward and extensively investigated. Investigations are costly and could induce unnecessary complications, especially with invasive diagnostics. Nevertheless, chest pain patients have high mortalities. Fast identification of high-risk patients is crucial. Therefore several strategies have been developed including specific symptoms, signs, laboratory measurements, and imaging.</p> <p>Methods/Design</p> <p>The Quick Identification of acute Chest pain Study (QICS) will investigate whether a combined use of specific symptoms and signs, electrocardiography, routine and new laboratory measures, adjunctive imaging including electron beam (EBT) computed tomography (CT) and contrast multislice CT (MSCT) will have a high diagnostic yield for patients with acute chest pain. All patients will be investigated according a standardized protocol in the Emergency Department. Serum and plasma will be frozen for future analysis for a wide range of biomarkers at a later time point. The primary endpoint is the safe recognition of low-risk chest pain patients directly at presentation. Secondary endpoint is the identification of a wide range of sensitive predictive clinical markers, chemical biomarkers and radiological markers in acute chest pain patients. Chemical biomarkers will be compared to quantitative CT measurements of coronary atherosclerosis as a surrogate endpoint. Chemical biomarkers will also be compared in head to head comparison and for their additional value.</p> <p>Discussion</p> <p>This will be a very extensive investigation of a wide range of risk predictors in acute chest pain patients. New reliable fast and cheap diagnostic algorithm resulting from the test results might improve chest pain patients' prognosis, and reduce unnecessary costs and diagnostic complications.</p

    High plasma uric acid concentration: causes and consequences

    Get PDF
    High plasma uric acid (UA) is a precipitating factor for gout and renal calculi as well as a strong risk factor for Metabolic Syndrome and cardiovascular disease. The main causes for higher plasma UA are either lower excretion, higher synthesis or both. Higher waist circumference and the BMI are associated with higher insulin resistance and leptin production, and both reduce uric acid excretion. The synthesis of fatty acids (tryglicerides) in the liver is associated with the de novo synthesis of purine, accelerating UA production. The role played by diet on hyperuricemia has not yet been fully clarified, but high intake of fructose-rich industrialized food and high alcohol intake (particularly beer) seem to influence uricemia. It is not known whether UA would be a causal factor or an antioxidant protective response. Most authors do not consider the UA as a risk factor, but presenting antioxidant function. UA contributes to > 50% of the antioxidant capacity of the blood. There is still no consensus if UA is a protective or a risk factor, however, it seems that acute elevation is a protective factor, whereas chronic elevation a risk for disease

    The associations between Parkinson’s disease and cancer: the plot thickens

    Full text link

    The Desensitized Channelrhodopsin-2 Photointermediate Contains 13-cis,15-syn retinal schiff base

    No full text
    Channelrhodopsin-2 (ChR2) is a light-gated cation channel and was used to lay the foundations of optogenetics. Its dark state X-ray structure has been determined in 2017 for the wild-type, which is the prototype for all other ChR variants. However, the mechanistic understanding of the channel function is still incomplete in terms of structural changes after photon absorption by the retinal chromophore and in the framework of functional models. Hence, detailed information needs to be collected on the dark state as well as on the different photointermediates. For ChR-2 detailed knowledge on the chromophore configuration in the different states is still missing and a consensus has not been achieved. Using DNP-enhanced solid-state MAS NMR spectroscopy on proteoliposome samples, we unambiguously determine the chromophore configuration in the desensitized state, and we show that this state occurs towards the end of the photocycle
    • …
    corecore