31,747 research outputs found

    Combined high-pressure and multiquantum NMR and molecular simulation propose a role for N-terminal salt bridges in amyloid-beta

    Get PDF
    Salts, Aggregation, Molecular structure, Cell and molecular biology, Post-translational modificatio

    Acupuncture randomized trials (ART) in patients with chronic low back pain and osteoarthritis of the knee - Design and protocols

    Get PDF
    Background: We report on the study design and protocols of two randomized controlled trials (Acupuncture Randomized Trials = ART) that investigate the efficacy of acupuncture in the treatment of chronic low back pain and osteoarthritis of the knee, respectively. Objective: To investigate whether acupuncture is more efficacious than (a) no treatment or (b) minimal acupuncture in the treatment of low back pain and osteoarthritis. Design: Two randomized, controlled, multicenter trials with three treatment arms and a total follow-up time of 52 weeks. Setting: 30 practitioners and outpatient units in Germany specialized in acupuncture treatment. Patients: 300 patients will be included in each study. In the low back pain trial, patients will be included according to clinical diagnosis. In the osteoarthritis pain trial, patients will be included according to the American College of Rheumatology criteria. Interventions: Patients are randomly assigned to receive either (1) semi-standardized acupuncture (150 patients), (2) minimal acupuncture at non-acupuncture points (75 patients), or (3) no treatment for two months followed by semi-standardized acupuncture (75 patients, waiting list control). Acupuncture treatment consists of 12 sessions per patient over a period of 8 weeks. Main Outcome Measure: The main outcome measure is the difference between baseline and the end of the 8-week treatment period in the following parameters: pain intensity as measured by a visual analogue scale (VAS; 0-100 mm) in the low back pain trial and by the Western Ontario and McMaster Universities Osteoarthritis Score (WOMAC) in the osteoarthritis trial. Outlook: The results of these two studies (available in 2004) will provide health care providers and policy makers with the information needed to make scientifically sound assessments of acupuncture therapy

    Synaptic partner prediction from point annotations in insect brains

    Full text link
    High-throughput electron microscopy allows recording of lar- ge stacks of neural tissue with sufficient resolution to extract the wiring diagram of the underlying neural network. Current efforts to automate this process focus mainly on the segmentation of neurons. However, in order to recover a wiring diagram, synaptic partners need to be identi- fied as well. This is especially challenging in insect brains like Drosophila melanogaster, where one presynaptic site is associated with multiple post- synaptic elements. Here we propose a 3D U-Net architecture to directly identify pairs of voxels that are pre- and postsynaptic to each other. To that end, we formulate the problem of synaptic partner identification as a classification problem on long-range edges between voxels to encode both the presence of a synaptic pair and its direction. This formulation allows us to directly learn from synaptic point annotations instead of more ex- pensive voxel-based synaptic cleft or vesicle annotations. We evaluate our method on the MICCAI 2016 CREMI challenge and improve over the current state of the art, producing 3% fewer errors than the next best method

    Stability of spin-0 graviton and strong coupling in Horava-Lifshitz theory of gravity

    Full text link
    In this paper, we consider two different issues, stability and strong coupling, raised lately in the newly-proposed Horava-Lifshitz (HL) theory of quantum gravity with projectability condition. We find that all the scalar modes are stable in the de Sitter background, due to two different kinds of effects, one from high-order derivatives of the spacetime curvature, and the other from the exponential expansion of the de Sitter space. Combining these effects properly, one can make the instability found in the Minkowski background never appear even for small-scale modes, provided that the IR limit is sufficiently closed to the relativistic fixed point. At the fixed point, all the modes become stabilized. We also show that the instability of Minkowski spacetime can be cured by introducing mass to the spin-0 graviton. The strong coupling problem is investigated following the effective field theory approach, and found that it cannot be cured by the Blas-Pujolas-Sibiryakov mechanism, initially designed for the case without projectability condition, but might be circumvented by the Vainshtein mechanism, due to the non-linear effects. In fact, we construct a class of exact solutions, and show explicitly that it reduces smoothly to the de Sitter spacetime in the relativistic limit.Comment: Some points regarding to strong coupling are further clarified, and typos corrected. revtex4, 9 figures. Version to appear in Physical Reviews

    High floc strength with aged polyelectrolytes

    Get PDF
    The ageing of powdered polyelectrolyte solutions has shown that while the viscosity of these solutions decreases rapidly with time, the flocculation performance and the strength of the flocs produced does not alter over periods >200 days. This was shown for polyacrylamides of cationic, anionic and non-ionic charge. The use of tap or deionized water did not adversely affect the results unless a biocide capable of associating with the polyelectrolyte was added. These results contradict the common belief that solutions made with powdered polyelectrolytes should not be stored for long periods of time as their performance decreases after being stored for several days. The results indicate that powdered polyelectrolyte solutions are suitable for intermittent process operations, such as sewer overflow treatment and that dosing and handling of the solutions can be made easier by ageing of the solutions

    Ultrafast Resonant Polarization Interferometry: Towards the First Direct Detection of Vacuum Polarization

    Full text link
    Vacuum polarization, an effect predicted nearly 70 years ago, is still yet to be directly detected despite significant experimental effort. Previous attempts have made use of large liquid-helium cooled electromagnets which inadvertently generate spurious signals that mask the desired signal. We present a novel approach for the ultra-sensitive detection of optical birefringence that can be usefully applied to a laboratory detection of vacuum polarization. The new technique has a predicted birefringence measurement sensitivity of Δn∌1020\Delta n \sim 10^{20} in a 1 second measurement. When combined with the extreme polarizing fields achievable in this design we predict that a vacuum polarization signal will be seen in a measurement of just a few days in duration.Comment: 9 pages, 2 figures. submitted to PR

    Are "EIT Waves" Fast-Mode MHD Waves?

    Full text link
    We examine the nature of large-scale, coronal, propagating wave fronts (``EIT waves'') and find they are incongruous with solutions using fast-mode MHD plane-wave theory. Specifically, we consider the following properties: non-dispersive single pulse manifestions, observed velocities below the local Alfven speed, and different pulses which travel at any number of constant velocities, rather than at the ``predicted'' fast-mode speed. We discuss the possibility of a soliton-like explanation for these phenomena, and show how it is consistent with the above-mentioned aspects.Comment: to be published in the Astrophysical Journa

    Compactifications of Heterotic Theory on Non-Kahler Complex Manifolds: I

    Get PDF
    We study new compactifications of the SO(32) heterotic string theory on compact complex non-Kahler manifolds. These manifolds have many interesting features like fewer moduli, torsional constraints, vanishing Euler character and vanishing first Chern class, which make the four-dimensional theory phenomenologically attractive. We take a particular compact example studied earlier and determine various geometrical properties of it. In particular we calculate the warp factor and study the sigma model description of strings propagating on these backgrounds. The anomaly cancellation condition and enhanced gauge symmetry are shown to arise naturally in this framework, if one considers the effect of singularities carefully. We then give a detailed mathematical analysis of these manifolds and construct a large class of them. The existence of a holomorphic (3,0) form is important for the construction. We clarify some of the topological properties of these manifolds and evaluate the Betti numbers. We also determine the superpotential and argue that the radial modulus of these manifolds can actually be stabilized.Comment: 75 pages, Harvmac, no figures; v2: Some new results added, typos corrected and references updated. Final version to appear in JHE

    A thorough dynamic interpretation of residual dipolar couplings in ubiquitin.

    No full text
    dipolar couplings (rdcs), ubiquitin The presence of slow motions with large amplitudes, as detected by measurements based on residual dipola

    Inferential NMR/X-ray-based structure determination of a dibenzo[a,d]cycloheptenone inhibitor-p38a MAP kinase complex in solution.

    Get PDF
    Complex problem: The crystal structure of p38α mitogen-activated protein kinase in complex with a dibenzo[a,d]cycloheptenone inhibitor was found to be incompatible with NMR data of the same complex in solution. By using inferential structure determination (ISD) with restraints from X-ray crystallography and NMR spectra, a structure that is compatible with both data sets and very close to the X-ray crystal structure was generated (see picture)
    • 

    corecore