3,929 research outputs found

    Effects of general anesthetics on visceral pain transmission in the spinal cord

    Get PDF
    Current evidence suggests an analgesic role for the spinal cord action of general anesthetics; however, the cellular population and intracellular mechanisms underlying anti-visceral pain by general anesthetics still remain unclear. It is known that visceral nociceptive signals are transmited via post-synaptic dorsal column (PSDC) and spinothalamic tract (STT) neuronal pathways and that the PSDC pathway plays a major role in visceral nociception. Animal studies report that persistent changes including nociception-associated molecular expression (e.g. neurokinin-1 (NK-1) receptors) and activation of signal transduction cascades (such as the protein kinase A [PKA]-c-AMP-responsive element binding [CREB] cascade)-in spinal PSDC neurons are observed following visceral pain stimulation. The clinical practice of interruption of the spinal PSDC pathway in patients with cancer pain further supports a role of this group of neurons in the development and maintenance of visceral pain. We propose the hypothesis that general anesthetics might affect critical molecular targets such as NK-1 and glutamate receptors, as well as intracellular signaling by CaM kinase II, protein kinase C (PKC), PKA, and MAP kinase cascades in PSDC neurons, which contribute to the neurotransmission of visceral pain signaling. This would help elucidate the mechanism of antivisceral nociception by general anesthetics at the cellular and molecular levels and aid in development of novel therapeutic strategies to improve clinical management of visceral pain

    Intermittent dislocation flow in viscoplastic deformation

    Full text link
    The viscoplastic deformation (creep) of crystalline materials under constant stress involves the motion of a large number of interacting dislocations. Analytical methods and sophisticated `dislocation-dynamics' simulations have proved very effective in the study of dislocation patterning, and have led to macroscopic constitutive laws of plastic deformation. Yet, a statistical analysis of the dynamics of an assembly of interacting dislocations has not hitherto been performed. Here we report acoustic emission measurements on stressed ice single crystals, the results of which indicate that dislocations move in a scale-free intermittent fashion. This result is confirmed by numerical simulations of a model of interacting dislocations that successfully reproduces the main features of the experiment. We find that dislocations generate a slowly evolving configuration landscape which coexists with rapid collective rearrangements. These rearrangements involve a comparatively small fraction of the dislocations and lead to an intermittent behavior of the net plastic response. This basic dynamical picture appears to be a generic feature in the deformation of many other materials. Moreover, it should provide a framework for discussing fundamental aspects of plasticity, that goes beyond standard mean-field approaches that see plastic deformation as a smooth laminar flow

    Ultrafast changes in lattice symmetry probed by coherent phonons

    Full text link
    The electronic and structural properties of a material are strongly determined by its symmetry. Changing the symmetry via a photoinduced phase transition offers new ways to manipulate material properties on ultrafast timescales. However, in order to identify when and how fast these phase transitions occur, methods that can probe the symmetry change in the time domain are required. We show that a time-dependent change in the coherent phonon spectrum can probe a change in symmetry of the lattice potential, thus providing an all-optical probe of structural transitions. We examine the photoinduced structural phase transition in VO2 and show that, above the phase transition threshold, photoexcitation completely changes the lattice potential on an ultrafast timescale. The loss of the equilibrium-phase phonon modes occurs promptly, indicating a non-thermal pathway for the photoinduced phase transition, where a strong perturbation to the lattice potential changes its symmetry before ionic rearrangement has occurred.Comment: 14 pages 4 figure

    Genetic Inactivation of Trpml3 Does Not Lead to Hearing and Vestibular Impairment in Mice

    Get PDF
    TRPML3, a member of the transient receptor potential (TRP) family, is an inwardly rectifying, non-selective Ca2+-permeable cation channel that is regulated by extracytosolic Na+ and H+ and can be activated by a variety of small molecules. The severe auditory and vestibular phenotype of the TRPML3(A419P) varitint-waddler mutation made this protein particularly interesting for inner ear biology. To elucidate the physiological role of murine TRPML3, we conditionally inactivated Trpml3 in mice. Surprisingly, lack of functional TRPML3 did not lead to circling behavior, balance impairment or hearing loss

    1H, 13C and 15N resonance assignments of the Calmodulin-Munc13-1 peptide complex

    Get PDF
    Ca2+-Calmodulin binding to the variable N-terminal region of the diacylglycerol/phorbol ester-binding UNC13/Munc13 family of proteins modulates the short-term synaptic plasticity characteristics in neurons. Here, we report the sequential backbone and side chain resonance assignment of the Ca2+-Calmodulin/Munc13-1458–492 peptide complex at pH 6.8 and 35°C (BMRB No. 15470)

    Higgsing M2 to D2 with gravity: N=6 chiral supergravity from topologically gauged ABJM theory

    Get PDF
    We present the higgsing of three-dimensional N=6 superconformal ABJM type theories coupled to conformal supergravity, so called topologically gauged ABJM theory, thus providing a gravitational extension of previous work on the relation between N M2 and N D2-branes. The resulting N=6 supergravity theory appears at a chiral point similar to that of three-dimensional chiral gravity introduced recently by Li, Song and Strominger, but with the opposite sign for the Ricci scalar term in the lagrangian. We identify the supersymmetry in the broken phase as a particular linear combination of the supersymmetry and special conformal supersymmetry in the original topologically gauged ABJM theory. We also discuss the higgsing procedure in detail paying special attention to the role played by the U(1) factors in the original ABJM model and the U(1) introduced in the topological gauging.Comment: 53 pages, Late

    D-Branes on the Conifold and N=1 Gauge/Gravity Dualities

    Full text link
    We review extensions of the AdS/CFT correspondence to gauge/ gravity dualities with N=1 supersymmetry. In particular, we describe the gauge/gravity dualities that emerge from placing D3-branes at the apex of the conifold. We consider first the conformal case, with discussions of chiral primary operators and wrapped D-branes. Next, we break the conformal symmetry by adding a stack of partially wrapped D5-branes to the system, changing the gauge group and introducing a logarithmic renormalization group flow. In the gravity dual, the effect of these wrapped D5-branes is to turn on the flux of 3-form field strengths. The associated RR 2-form potential breaks the U(1) R-symmetry to Z2MZ_{2M} and we study this phenomenon in detail. This extra flux also leads to deformation of the cone near the apex, which describes the chiral symmetry breaking and confinement in the dual gauge theory.Comment: Based on I.R.K.'s lectures at the Les Houches Summer School Session 76, ``Gravity, Gauge Theories, and Strings'', August 2001, 42 pages, v2: clarifications and references adde

    Evidence for Two Modes of Synergistic Induction of Apoptosis by Mapatumumab and Oxaliplatin in Combination with Hyperthermia in Human Colon Cancer Cells

    Get PDF
    Colorectal cancer is the third leading cause of cancer-related mortality in the world-- the main cause of death from colorectal cancer is hepatic metastases, which can be treated with isolated hepatic perfusion (IHP). Searching for the most clinically relevant approaches for treating colorectal metastatic disease by isolated hepatic perfusion (IHP), we developed the application of oxaliplatin concomitantly with hyperthermia and humanized death receptor 4 (DR4) antibody mapatumumab (Mapa), and investigated the molecular mechanisms of this multimodality treatment in human colon cancer cell lines CX-1 and HCT116 as well as human colon cancer stem cells Tu-12, Tu-21 and Tu-22. We showed here, in this study, that the synergistic effect of the multimodality treatment-induced apoptosis was caspase dependent and activated death signaling via both the extrinsic apoptotic pathway and the intrinsic pathway. Death signaling was activated by c-Jun N-terminal kinase (JNK) signaling which led to Bcl-xL phosphorylation at serine 62, decreasing the anti-apoptotic activity of Bcl-xL, which contributed to the intrinsic pathway. The downregulation of cellular FLICE inhibitory protein long isoform (c-FLIPL) in the extrinsic pathway was accomplished through ubiquitination at lysine residue (K) 195 and protein synthesis inhibition. Overexpression of c-FLIPL mutant (K195R) and Bcl-xL mutant (S62A) completely abrogated the synergistic effect. The successful outcome of this study supports the application of multimodality strategy to patients with colorectal hepatic metastases who fail to respond to standard chemoradiotherapy that predominantly targets the mitochondrial apoptotic pathway. © 2013 Song et al

    Surface electrons at plasma walls

    Full text link
    In this chapter we introduce a microscopic modelling of the surplus electrons on the plasma wall which complements the classical description of the plasma sheath. First we introduce a model for the electron surface layer to study the quasistationary electron distribution and the potential at an unbiased plasma wall. Then we calculate sticking coefficients and desorption times for electron trapping in the image states. Finally we study how surplus electrons affect light scattering and how charge signatures offer the possibility of a novel charge measurement for dust grains.Comment: To appear in Complex Plasmas: Scientific Challenges and Technological Opportunities, Editors: M. Bonitz, K. Becker, J. Lopez and H. Thomse
    corecore