56,446 research outputs found
Photochromism of dihydroquinolines
Reversible photochromic reactions, in which absorption spectrum of chemical compound may be shifted by application of visible or ultraviolet light, and then returned to original state by heating, are observed for certain members of 1,2-dihydroquinoline family. Structural formulas for colorless and colored states are given
Acoustic source location in a jet-blown flap using a cross-correlation technique
The acoustic source strength distribution in a turbulent flow field was measured for two far field microphones at 45 deg above and below the plane of the flap surface. A processed signal from an inclined hot-film anemometry probe was cross correlated with the signal from the appropriate far field microphone. The contribution made by the sources associated with the fluctuating pressure on the flap surface to the sound received at far field microphone was estimated by cross correlating the processed signals of microphones which were embedded in the flap surface with the far field microphone signals. In addition, detailed fluid dynamic measurements were made in the flow field of the jet flap using dual sensor hot-film anemometry probes
Modelling Structural Change in Money Demand Using a Fourier-Series Approximation
The paper develops a simple method that can be used to test for a time-varying intercept and to approximate its form. The test is solidly grounded in asymptotic theory and has good small-sample properties. The methodology is based on the fact that a Fourier approximation can capture the variation in any absolutely integrable function of time. As such, it is possible to use successive applications of the test to "back-out" the form of the time-varying intercept. We illustrate the methodology using an extended example concerning the demand for money.structural break; fourier approximations; money demand
Learning Curves for Mutual Information Maximization
An unsupervised learning procedure based on maximizing the mutual information
between the outputs of two networks receiving different but statistically
dependent inputs is analyzed (Becker and Hinton, Nature, 355, 92, 161). For a
generic data model, I show that in the large sample limit the structure in the
data is recognized by mutual information maximization. For a more restricted
model, where the networks are similar to perceptrons, I calculate the learning
curves for zero-temperature Gibbs learning. These show that convergence can be
rather slow, and a way of regularizing the procedure is considered.Comment: 13 pages, to appear in Phys.Rev.
Solar wind helium, neon and argon released by oxidation of metal grains from the Weston chondrite
A set of experiments were carried out to test the feasibility of determining unfractionated elemental and isotopic ratios for the noble gases in the presumably ancient solar wind present in the gas rich meteorites. The problems of diffusive loss was avoided by analyzing metal rather than the usual silicates. In order to avoid chemical, and even harsh physical, treatment of the sample, which might have affected the surfaces of metal grains, a means of analyzing the metal in the presence of residual silicate not removed by gentle crushing and magnetic separation was devised. Preliminary results given were obtained by taking advantage of the differing properties of metal and silicates with regard to diffusion. The results suggests that, with some modifications in the choice of pyrolysis and combustion temperatures and in the amount of O2 used, it should be possible, by oxidizing the surfaces of metal grains from gas rich meteorites, to obtain data on solar wind that has not been fractionated by diffusive loss
Rapid X-ray variability from the Seyfert 1 Galaxy NGC 4051
Strong variable X-ray emission from the nearby low luminosity Seyfert 1 galaxy NGC 4051 was discovered during observations with the imaging proportional counter of the Einstein Observatory. During one 2304 second observation, the X-ray flux more than doubled in an approximately linear fashion, and a 70% increase for 150 seconds was seen during another 968 second observation. Evidence is presented which demonstrates that the X-ray spectrum of NGC 4051 is unusually soft compared to Seyfert 1 galaxies or QSOs. The emission mechanism is probably not synchrotron or synchrotron self-Compton, but the emission can be plausibly explained by various black hole accretion models
Theoretical analysis of STM-derived lifetimes of excitations in the Shockley surface state band of Ag(111)
We present a quantitative many-body analysis using the GW approximation of
the decay rate due to electron-electron scattering of excitations in
the Shockley surface state band of Ag(111), as measured using the scanning
tunnelling microscope (STM). The calculations include the perturbing influence
of the STM, which causes a Stark-shift of the surface state energy and
concomitant increase in . We find varies more rapidly with
than recently found for image potential states, where the STM has been shown to
significantly affect measured lifetimes. For the Shockley states, the
Stark-shifts that occur under normal tunnelling conditions are relatively small
and previous STM-derived lifetimes need not be corrected.Comment: 4 pages, 3 figure
Cosmic variance of the galaxy cluster weak lensing signal
Intrinsic variations of the projected density profiles of clusters of
galaxies at fixed mass are a source of uncertainty for cluster weak lensing. We
present a semi-analytical model to account for this effect, based on a
combination of variations in halo concentration, ellipticity and orientation,
and the presence of correlated haloes. We calibrate the parameters of our model
at the 10 per cent level to match the empirical cosmic variance of cluster
profiles at M_200m=10^14...10^15 h^-1 M_sol, z=0.25...0.5 in a cosmological
simulation. We show that weak lensing measurements of clusters significantly
underestimate mass uncertainties if intrinsic profile variations are ignored,
and that our model can be used to provide correct mass likelihoods. Effects on
the achievable accuracy of weak lensing cluster mass measurements are
particularly strong for the most massive clusters and deep observations (with
~20 per cent uncertainty from cosmic variance alone at M_200m=10^15 h^-1 M_sol
and z=0.25), but significant also under typical ground-based conditions. We
show that neglecting intrinsic profile variations leads to biases in the
mass-observable relation constrained with weak lensing, both for intrinsic
scatter and overall scale (the latter at the 15 per cent level). These biases
are in excess of the statistical errors of upcoming surveys and can be avoided
if the cosmic variance of cluster profiles is accounted for.Comment: 14 pages, 6 figures; submitted to MNRA
The Projected Rotational Velocity Distribution of a Sample of OB stars from a Calibration based on Synthetic He I lines
We derive projected rotational velocities (vsini) for a sample of 156
Galactic OB star members of 35 clusters, HII regions, and associations. The HeI
lines at 4026, 4388, and 4471A were analyzed in order to define
a calibration of the synthetic HeI full-widths at half maximum versus stellar
vsini. A grid of synthetic spectra of HeI line profiles was calculated in
non-LTE using an extensive helium model atom and updated atomic data. The
vsini's for all stars were derived using the He I FWHM calibrations but also,
for those target stars with relatively sharp lines, vsini values were obtained
from best fit synthetic spectra of up to 40 lines of CII, NII, OII, AlIII,
MgII, SiIII, and SIII. This calibration is a useful and efficient tool for
estimating the projected rotational velocities of O9-B5 main-sequence stars.
The distribution of vsini for an unbiased sample of early B stars in the
unbound association Cep OB2 is consistent with the distribution reported
elsewhere for other unbound associations.Comment: Accepted for publication in The Astronomical Journa
Pristine CNO abundances from Magellanic Cloud B stars II. Fast rotators in the LMC cluster NGC 2004
We present spectroscopic abundance analyses of three main-sequence B stars in
the young Large Magellanic Cloud cluster NGC 2004. All three targets have
projected rotational velocities around 130 km/s. Techniques are presented that
allow the derivation of stellar parameters and chemical abundances in spite of
these high v sin i values. Together with previous analyses of stars in this
cluster, we find no evidence among the main-sequence stars for effects due to
rotational mixing up to v sin i around 130 km/s. Unless the equatorial
rotational velocities are significantly larger than the v sin i values, this
finding is probably in line with theoretical expectations. NGC 2004/B30, a star
of uncertain evolutionary status located in the Blue Hertzsprung Gap, clearly
shows signs of mixing in its atmosphere. To verify the effects due to
rotational mixing will therefore require homogeneous analysis of statistically
significant samples of low-metallicity main-sequence B stars over a wide range
of rotational velocities.Comment: 12 pages, 5 figures, 2 tables; accepted for publication in ApJ (vol.
633, p. 899
- …