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Abstract 
 

The paper develops a simple method that can be used to test for a time-varying intercept 
and to approximate its form. The test is solidly grounded in asymptotic theory and has good 
small-sample properties. The methodology is based on the fact that a Fourier approximation can 
capture the variation in any absolutely integrable function of time. As such, it is possible to use 
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illustrate the methodology using an extended example concerning the demand for money.  

 
 
 

Keywords: Structural break, Fourier Approximation, Money Demand 
 
JEL Classification: E24, E31 
 
* Corresponding author: Department of Economics, Finance and Legal Studies, University of 
Alabama, Tuscalooosa, AL 35487, wenders@cba.ua.edu. Walter Enders was visiting the 
University of Technology, Sydney (UTS) at the time this paper was written. He would like to 
thank UTS for their supportive research environment. 

 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6598966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 

1

Modeling Structural Change in Money Demand Using a Fourier-Series 
Approximation 

 
 
1. Introduction 

 

Consider an economic time-series model such that:  

yt = αt + βxt + εt (1) 

where: αt is the time-varying intercept, xt is a vector containing exogenous explanatory variables 

and/or lagged values of yt and εt is an i.i.d disturbance term that is uncorrelated with any of the 

series contained in xt. The notation in (1) is designed to emphasize the fact that the intercept term 

is a function of time. Although it is possible to allow the value of β to be time-varying, in order 

to highlight the effects of structural change, we focus only on the case in which the intercept 

changes over time. If the functional form of αt is known, the series can be estimated, hypotheses 

can be tested and conditional forecasts of the various values of {yt+j} can be made. In practice, 

the key problems are that the econometrician may not be sure if there is parameter instability 

and, if such instability exists, what form it is likely to take.   

The time-series literature does address the first problem in great detail. In addition to the 

standard Chow (1960) test, Brown, Durbin and Evans (1975) CUSUM test and Hausman (1978) 

test, survey articles by Rosenberg (1973) and Chow (1984) discuss numerous tests designed to 

detect structural change. More recently, Andrews (1993) and Andrews and Ploberger (1994) 

have shown how to determine if there is a one-time change in a parameter when the change point 

is unknown, Hansen (1992) has considered parameter instability in regressions containing I(1) 

variables, Lin and Terasvirta (1994) show how to test for multiple breaks, and Tan and Ashley 

(1999) formulated a test for frequency dependence in regression parameters.  
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The second problem is more difficult to address since there are many potential ways to 

model a changing intercept when the functional form of αt is unknown. For example, it is 

possible to include dummy variables to capture seasonal effects or the influence of one or more 

structural breaks. Similarly, the inclusion of additional explanatory variables may capture the 

underlying reason for the change in the intercept. Another track is to let the data determine the 

functional form of αt. For example, the local-level model described in Harvey (1989) uses the 

Kalman Filter to estimate αt as an autoregressive (or unit-root) process. Similarly, the time-

varying intercept may be estimated using a Markov-switching process, flexible least squares or a 

threshold process.  

If there is little a priori information concerning the actual form of αt, any estimated 

model likely to perform poorly since it is difficult to discriminate among alternative 

specifications using the standard diagnostic tools. As noted by Clements and Hendry (1998, pp. 

168-9), parameter change appears in many guises and can cause significant forecast error when 

models are used in practice. They also go on to add that it can be difficult to distinguish model 

misspecification from the problem of non-constant parameters. One purpose of this paper is 

demonstrate how these difficulties may be alleviated by the use of a test for a time-varying 

intercept which may simultaneously be used as modelling strategy to ‘back-out” the form of the 

time-varying intercept. The other is to apply the methodology to the demand for money. It is 

particularly interesting that the time-varying intercept suggests that money demand was never a 

stable function of the price level, real income and the short-term interest rate. 

The test for a time-varying intercept is based on the fact that a Fourier approximation can 

capture the variation in any absolutely-integrable function of time. Our proposed methodology 

represents αt by a Fourier approximation so that the issue becomes one of deciding which 
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frequencies to include in the approximation. The test was first introduced by Davies (1987), who 

derived the asymptotic critical values necessary to determine the statistical significance of a 

frequency component in a regression equation. However, Davies (1987) did not apply the test to 

any particular data set nor did he consider the possibility of successive applications of the test. If 

the frequencies used in the Fourier approximation were known, the test is similar to that of 

Farley and Hinich (1970, 1975) who consider a model with parameter trend. It is also analogous 

to that of Tan and Ashley (1999) if their frequency band is restricted to a single frequency. If 

there is a single structural break, the test works nearly as well as the Andrews and Ploberger 

(AP) optimal test. In the presence of more than one break, the test can have substantially more 

power than the AP test. 

There are many tests for parameter instability and it is not the intention of this paper 

merely to present the empirical properties of yet another. Instead the methodology presented here 

is intended to be most helpful when it is not clear how to model the time-varying intercept. The 

novel feature of this approach is that it uses the time-varying intercept as a modelling device to 

capture the form of any potential structural breaks and hence lessen the influence of model 

misspecification on the estimated equations. The method is similar to that of Ludlow and Enders 

(2000) who use Monte Carlo critical values as a means to back-out a time-varying autoregressive 

coefficient. By contrast, the strategy used in this paper is solidly based on asymptotic theory. 

The rest of the paper is structured as follows. Section 2 describes the test procedure of 

using a Fourier approximation to test for time-variation in the intercept term of a regression 

equation. Section 3 shows that it is possible to use successive applications of the test to ‘back-

out” the form of the time-varying intercept. Hence, the modeling strategy is to continue to apply 

the test until all significant frequencies have been eliminated from the regression residuals. Since 
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the sum of the selected Fourier terms is a universal approximator, this sum yields an 

approximation of the intercept. In Section 4, apply the methodology to the demand for money (as 

measured by M3. In essence, we back-out the form of the so-called “missing money.” There is 

the strong suggestion that the missing money has the same form as the major stock market 

indices. Conclusions and limitations of our work are discussed in the final section. 

2. The Davies Test as a Fourier Approximation 

If αt is an absolutely integrable function, for any desired level of accuracy, it is possible 

to write:1 

 
;   s ≤ T/2   (2) 
 

where: s refers to the number of frequencies contained in the process generating αt, k represents a 

particular frequency and T is the number of usable observations.  

 The key point is that the behavior of any deterministic sequence can be readily captured 

by a sinusoidal function even though the sequence in question is not periodic. As such, the 

intercept may be represented by a deterministic time-dependent coefficient model without first 

specifying the nature of the nonlinearity. The nature of the approximation is such that the case of 

a constant (possibly zero) intercept emerges as the special case in which all values of Ak and Bk 

are equal to zero. Thus, instead of positing a specific model, the specification problem is 

transformed into one of selecting the proper frequencies to include in (2).  

 For any particular frequency k the issue is to obtain the critical values for the null 

hypothesis Ak = Bk = 0. If the frequency were known, it would be possible to test this null 

hypothesis using a standard F-statistic. One could simply construct the variables sin(2πkt/T) and 

cos(2πkt/T) and perform the estimation using OLS. Unfortunately, the issue is complicated by 

the fact that the relevant frequencies are unknown and each is a nuisance parameter present only 
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under the alternative hypothesis. Moreover, it is not practical include all possible frequencies. 

However, if αt is not constant, there will be at least one frequency present in (2). To restate the 

issue, if it is found that any one frequency belongs in the equation for αt, the intercept cannot be 

constant. Hence, a test for the presence of a Fourier component in (2) can be used to detect and 

model any change in intercept term of a regression. Such changes could result from any number 

of factors including structural breaks, seasonality of an unknown form and/or an omitted variable 

from a regression equation. 

 Davies (1987) considers the case in which a time-series {yt} consists of independent 

normal random variables with a known constant variance.2 Suppose that we want to estimate yt 

using only a single frequency: 

tt t
T

k2
  B + t

T

k2
  A =y     ε

ππ
+•• cossin   (3) 

 Since the test statistic for A = B = 0 involves a nuisance parameter k that is unidentified 

under the null hypothesis, it is not possible to rely on standard asymptotic theory to obtain an 

appropriate test statistic. Instead, if S(k) is the test statistic in question, Davies uses the 

supremum: 

 M = sup{S(k): L ≤ k ≤ U}     (4) 

where: [ L, U ] is the range of possible values of k.  

 To use the Davies test, demean and standardize the {yt} sequence to have a unit-variance 

and call the resultant sequence {xt}. Reparameterize (3) such that:  

 Et-1(xt) = a1sin[ ( t - 0.5T - 0.5)θ ]  + b1cos[ ( t - 0.5T - 0.5 )θ ] (5) 
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 In (5), the values of {xt} are zero-mean, unit-variance i.i.d normally distributed random 

variables with a period of oscillation equal to 2π/k (since θ = 2πk/T). For the possible values of  

of θ in the range [ L, U ] where 0 ≤ L < U ≤ π, construct: 
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θθθ   (6) 

where: v1 = 0.5T - 0.5sin(Tθ)/sin(θ) and v2 = 0.5T + 0.5sin(Tθ)/sin(θ) 

 Davies shows that: 

 prob [ sup { S(θ): L ≤  θ ≤ U } > u ]    (7) 

can be approximated by:3 

 Tu0.5e-0.5u( U – L )/(24π)0.5 + e-0.5u  (8) 

 In essence, the Davies test is equivalent to estimating (3) for each possible frequency in 

the interval U – L. The frequency providing the smallest residual sum of squares is called k* and 

the Fourier coefficients associated with that frequency are called A* and B*. However, the test of 

the null hypothesis A* = B* = 0 is performed using (6) instead of a traditional F-test. As an aside, 

notice that it is not necessary to estimate (3) to perform the test—S(θ) can be constructed for 

each potential value of θ and the value yielding the largest S(θ) is used to perform the test. 

However, it is necessary to estimate (3) to obtain the values A* and B*. Also note that, in 

principle, k and θ are continuous variables. As such, to perform the test, it is necessary to 

subdivide the interval U – L into discrete parts.4  

 For example, suppose that we estimate (1) under the assumption of a constant value for αt 

and want to determine whether there is a time-varying intercept. To perform the Davies test, 

standardize the regression residuals such that they have a unit variance—thus, these residuals 

become our {xt} sequence. Also suppose that we construct S(θ) as in equation (6) using all 
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frequencies over the interval [ 0, 2 ] using steps of θ/256.  Given the range of k, the values of U 

and L are 0.126 and 0, respectively (U = 2*π*2/100 = 0.126). Suppose that the largest calculated 

value of S(θ) = 10.0. If there are 100 observations, equation (7) indicates that the critical values 

of sup S(θ) are 9.37, 10.88 and 12.86 at the  0.05, 0.025 and 0.01 significance levels, 

respectively. Hence, it would be possible to reject the null hypothesis A* = B* = 0 at the 5%, but 

not the 2.5% significance level. Thus, at the 5% level it is possible to maintain that the intercept 

term has the form:  

  (9) 

 

 Davies provides a small Monte Carlo experiment designed to illustrate the power of the 

test. Using L = 0 and U = π and various values for the sample size T, Davies generated 4000 

series using the data generating process: 

 yt = 




≥+−++
<++

θεθξ
θε

ttbta

tbta

t

t

)(
 (10) 

Hence, the deterministic portion of the {yt} sequence is a linear trend with a permanent break 

in the intercept and slope occurring at time period θ. For each series, sup S(θ) was calculated 

using subintervals of θ equal to π/128 and π/256. Four conclusions emerged from this study of 

the power of the test. First, the power of the test increases in the sample size T. Second, the 

power of the test seems to be moderately robust to non-normality. Third, if the frequency is not 

an integer, the use of integer frequencies entails a loss of power. Fourth, if the frequency k is an 

integer, the power of the discrete form of the test exceeds that of the test using fractional 

frequencies. 
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 It should be clear that the search interval for θ = [ 0 ≤ L < U ≤ π] is at the discretion of 

the researcher. As can be seen from equation (8), increasing the size of U - L increases the 

probability of any given value of u. Thus, unnecessarily expanding the size of the interval will 

reduce the power of the test.  If we are considering a small number of structural breaks, it makes 

sense to use a small value of U since a structural break is a ‘low frequency’ event. Similarly, in 

using the Fourier approximation to capture seasonal changes in the mean, a period of exactly one 

year is appropriate.  

It is well known that the most powerful test for a one-time change in the mean is that of 

Andrews and Ploberger (1994). In order to illustrate the relative power of the Davies test, we 

used the data generating process:  

 yt = αt + βxt + εt, t = 1,…,60      (11) 

where xt and εt ~ N(0,1), â = 1 and: 

 




>∀
≤∀

=
40,

40,0

t

t
t δ

α  (12) 

 We considered values of k in the range [ 0, 1 ] in order to allow for the possibility of an 

infrequent change in the mean. After all, a frequency greater than one is not likely to replicate a 

single break. Table 1 shows the power of the AP (1994) and the Davies (1987) tests for different 

break sizesδ .  

 Of course, if it is known that there cannot be more than a single break in the intercept, the 

AP test is preferable to the Davies test. However, the Davies test does perform almost as well as 

the optimal test for a single break. As we show in the next section, the test can have far more 

power then the Andrews and Ploberger test if there is more than one break. We also show that 

the estimated coefficients and frequency (frequencies) mimic structural breaks extremely well. 
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3. Using a Fourier Approximation for Modeling Structural Breaks 

 Figure 1 illustrates the simple fact that use of a single frequency in a Fourier 

approximation can approximate a wide variety of functional forms. The solid line in each of the 

four panels represents a sequence that we approximate using a single frequency. We let the four 

panels depict sharp breaks since the smooth Fourier approximation has the most difficulty in 

mimicking a sharp break. Consider panel a in which the solid line represents a one-time change 

in the level of a series. Although the single frequency k = 0.1953 ( so that  θ = 0.01226 ) 

approximates the sequence imperfectly, the approximation αt = 2.4 – 0.705sin(0.01226 t) – 

1.82cos(0.01226 t) does capture the fact that the sequence increases over time. In panel b there 

are two breaks in the series. In this case, the approximation αt = 0.642 – 0.105sin(0.586 t) –

0.375cos(0.586 t), so that k = θT/2π = 0.037, captures the overall tendency of the series to 

increase. The solid line in panel c depicts a sequence with a temporary change in the level while 

the solid line in panel d depicts a “seasonal” sequence that is low in periods 1 – 25 and 51 – 75 

and high in periods 26 – 50 and 76 – 100. Again, the approximations using a single frequency do 

reasonably well. It is interesting that the frequency used for the approximation in panel d is 

exactly 2.0 since there are two regular changes in the level of the sequence.  

 The point is that all of these sequences can be approximated by a single frequency of 

rather low order. We performed a second Monte Carlo experiment to validate the notion that a 

Fourier approximation can be especially useful to mimic a sequence with multiple breaks. As 

such, we modified the data generating process in (12) to have a second structural break: 
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 As shown in Table 2, the Davies test still possesses reasonably high power, while the AP 

test has much weaker power compared to its power against a one time structural break.5 

 To this point, we have considered the use of only one frequency as a test for parameter 

instability. However, it is possible to use successive applications of the test to ‘back-out’ the 

form of the intercept term. The solid line in Figure 2 shows a sequence that we might want to 

approximate. If we approximate this sequence with a single frequency (k = 1.171) , we obtain  

 αt = -2.56 + 6.38sin(0.0736 t) – 1.65cos(0.0736 t) 

and depict this as the dashed line labeled “1 Frequency.” Next, we applied the Davies test to the 

difference yt - αt and obtained a second significant frequency component. The relevant 

approximation is now 

αt = -2.56 + 6.38sin(0.0736 t) – 1.65cos(0.0736 t) + 2.49sin(0.172 t) + 2.74cos(0.172 t) 

and is depicted by the line labeled “2 Frequencies” in Figure 2. Although this procedure can be 

repeated until the Davies test indicates that no additional frequency components are statistically 

significant, it is already clear that the simple addition of a second frequency provides a marked 

improvement in the performance of the approximation. The contention now is that the use of this 

approximation in a regression model with unknown structural breaks will lead to improved 

inference and to a better model. 

4. Structural Breaks in the Demand for Money 

 As discussed in a number of survey articles, including those by Goldfeld (1976) and Judd 

and Scadding (1982), there is a vast literature indicating a breakdown in the simple money 

demand relationship. As such, it seemed reasonable to apply our methodology to see if it could 

facilitate the modeling of a notorious problem. Consequently we obtained quarterly values of the 

U.S. money supply as measured by M3, seasonally adjusted real and nominal gdp, and the 3-
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month treasury bill rate for the period 1959:1 – 2001:1 from the website of the Federal Reserve 

Bank of St. Louis (www.stls.frb.org/index.html).6 We constructed the price level as the ratio of 

nominal to real gdp. As shown in Table 3, augmented Dickey-Fuller tests including a time trend 

in the estimating equation indicated that the logarithms of M3 (m), real gdp (y) and the price 

level (p) do not act as trend stationary processes. In contrast, the 3-month T-bill rate (r) shows 

some evidence of stationarity.  

4.1 The long-run model 
 
 We then estimated the simple money demand function (with t-statistics in parentheses): 

 
 mt = -0.106 + 1.07pt + 0.962yt + 0.011rt (14) 

       (-0.231) (29.89)   (18.75)    (6.22) 
 
 aic = -98.14, bic = -85.62  
 
 Although the price and income elasticities are statistically significant and are of the 

correct sign and magnitude, there are some serious problems with the regression equation. In 

addition to the fact that the interest rate semi-elasticity of demand is positive, the residuals are 

not well-behaved. For example, the autocorrelations of the residuals are quite high: 

ρ1   ρ2 ρ3 ρ4  ρ5 ρ6 ρ7 ρ8 
0.96 0.90 0.83 0.75 0.68 0.60 0.53 0.46 

 

 The impression that (14) is not a cointegrating vector is confirmed by the Engle-Granger 

(1987) test. For the lag lengths selected by the aic and sbc, the t-statistics for the null hypothesis 

that the residual series is nonstationary are –2.94 and  –2.75, respectively. 

 Of course, a structural break or a missing variable may be one reason that the residuals 

appear to be nonstationary. At this point, it is not our aim to determine whether the residuals pass 

a test for white-noise. Instead, we want to determine the most appropriate frequency to include in 
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our Fourier approximation of the intercept term. We used the standardized residuals {xt} to 

construct the value S(θ) shown in (6) for each frequency in the interval [0, 8].7 Since there are 

169 observations, this is equivalent to searching over θ in the interval 0 to 0.297. The frequency 

yielding the largest value of S(θ) is such that k* = 2.49 and an associated value of sup S(θ) = 

53.72. For L = 0 and U = 0.297, this value of S(θ) is  significant at the 9.389 x 10-11 level.8 

Hence, there is at least one frequency present in the regression residuals. We then used this 

frequency k* to estimate a money demand function in the form: 

 m = αt + α1p + α2y + α3r (15) 

where: αt = a0 + A1
*sin[(t-0.5T-0.5)θ] + B1

*cos[(t-0.5T-0.5)θ]  

 Table 4 reports these values along with the value of the aic and bic for the resulting 

regression. The resulting residuals from this equation were again standardized and the procedure 

was repeated. As shown in the second row of Table 4, the new value of sup S(θ) is 87.96 with a 

k* = 3.45. We re-estimated the entire money demand equation including the two frequencies in 

αt. We continued to repeat the process until we found no additional statistically significant 

frequencies in the regression residuals. Since the sixth iteration produces a value of sup S(θ) that 

was not significant at conventional levels, we retained only the results from the first five 

iterations. The final estimate of the money demand relationship is: 

 
 mt = αt + 1.07pt + 0.947yt - 0.007rt (16) 

               (30.14)   (22.14)   (-8.10) 
 

where: αt = [ ]∑
=

++
5

1

**
0 )/2cos()/2sin(

i
iiii TtkBTtkAa ππ  

 
and: a0 = 0.138 with a t-statistic of 0.358 and the Ai

* and Bi
* are given in Table 4.  
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 The final model fits the data quite well. The aic and bic (incorporating the fact that two 

additional coefficients plus the frequency are estimated at each new iteration) steadily decline as 

the number of iterations increases through iteration 5. The key point, however, is that the 

residuals are well-behaved. The last column of the table shows the t-statistic for the Engle-

Granger (1987) test that the residuals from the money demand function using the frequency 

components through iteration i are nonstationary.  

As in (14), the price and income elasticities are of the correct magnitude. However, the 

interest rate semi-elasticity of demand for money now has the correct sign with a magnitude that 

is 8.1 times its standard error. Figure 3 provides a visual representation of αt. The striking 

impression is that the demand for money generally rose from 1959 through 1987. At this point, 

the demand for money suddenly declined. The decline continued thorough 1995 and then 

resumed its upward movement.  

4.2 The error-correction model 
 
 In the presence of αt, the four variables appear to form a cointegrating relationship; as 

such, there exists an error-correction representation such that lm, ly, lp and r adjust to the 

discrepancy from the long-run equilibrium relationship. However, unlike a traditional error-

correction model, adjustment will be nonlinear since the constant in the cointegrating vector is a 

function of time. As such, we estimated the following error-correcting model using the residuals 

from (16) as the error-correction term. Consider: 

 
 ∆lmt = -0.231ect-1 + A11(L)∆lmt-1 + A12(L)∆lpt-1 + A13(L)∆lyt-1 + A14(L)∆rt-1  (17) 
  (-5.74)        (0.000)             (0.031)           (0.025)           (0.082) 
 

∆lpt =  0.082ect-1 + A21(L)∆lmt-1 + A22(L)∆lpt-1 + A23(L)∆lyt-1 + A24(L)∆rt-1 (18) 
  (3.72)         (0.281)       (0.000)            (0.317)          (0.180) 
 

∆lyt = 0.122ect-1 + A31(L)∆lmt-1 + A32(L)∆lpt-1 + A33(L)∆lyt-1 + A34(L)∆rt-1 (19) 
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 (0.176)      (0.405)       (0.515)           (0.081)          (0.003) 
 

∆rt =  0.187ect-1 + A41(L)∆lmt-1 + A42(L)∆lpt-1 + A43(L)∆lyt-1 + A44(L)∆rt-1 (20) 
 (0.297)      (0.285)            (0.005)           (0.009)          (0.000) 

 

where: ect-1 = error-correction term (as measured by the residual from (6), Aij(L) = third-order 

polynomials in the lag operator L, parenthesis contain the t-statistic for the null hypothesis that 

the coefficient on the error-correction term is zero or the F-statistic for the null-hypothesis that 

all coefficients in Aij(L) = 0, and constant terms in the intercepts are not reported.  

 Note that the money supply contracts and the price level increases in response to the 

previous period’s deviation from the long-run equilibrium. However, income and the interest rate 

appear to be weakly exogenous.  

4.3 The restricted model 
 
 Given that the income and price elasticities of the money demand function are so close to 

unity, we also investigated the restricted money demand equation: 

 
 lmpt = -0.492 + 0.014rt (21) 
  (-41.52)  (7.79) 
 
 aic = -74.51  bic = -71.38 

 This regression suffered the same problems as the unconstrained form of the money 

demand function. After applying our methodology to the constrained money demand function we 

obtained: 

 
mpt = α(t) - 0.004rt (22) 

                  (-4.87) 
 
aic = -599.25  bic = -539.77 
 



 
 

15

where:  mp = the logarithm of real money balanced divided by real gdp (i.e.,  lm3 – lp – ly) and 

αt = has the same form as (16).  

The time path of αt is virtually identical to that shown in Figure 3. The error-correction 

model using the constrained form of the money-demand function is: 

 
∆lmpt = -0.394ect-1 + A11(L)∆lmpt-1 + A12(L)∆rt-1 (23) 
              (-6.84)         (0.000)              (0.000) 
 
∆lrt = 1.86ect-1 + A11(L)∆lmpt-1 + A12(L)∆rt-1  (24) 
           (0.341)         (0.208)          (0.000) 
 

where: ect-1 = error-correction term (as measured by the residual from (22), Aij(L) = third-order 

polynomials in the lag operator L, parenthesis contain the t-statistic for the null hypothesis that 

the coefficient on the error-correction term is zero or the F-statistic for the null-hypothesis that 

all coefficients in Aij(L) = 0, and intercepts are not reported.  

4.4 Integer Frequencies 
 
 There are instances in which it might be desirable to limit the search to integer 

frequencies. For example, in using highly seasonal data, it seems natural to consider a frequency 

with a period of 4 quarters of 12 months. Integer frequencies guarantee that the initial and 

terminal values of αt with be the same and integer frequency components also have the desirable 

statistical property that they are orthogonal to each other.9 When only discrete frequencies are 

used, Davies (1987) shows that the critical values for sup S(θ) implied by (8) should be modified 

such that prob [ sup { S(θ): L ≤  θ ≤ U } > u ]  is: 

 1 – (1 - e-0.5u)0.5T (U – L )/π (25) 
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 In order to illustrate the use of integer frequencies and to compare the approximation to 

that using continuous frequencies, we re-estimated the money demand function using discrete 

frequencies in the interval [ 1, 8 ] so that θ ranges from 0.0372 to 0.2974 in steps of 0.0372.  

 The results from estimating the money demand function with integer frequencies are 

shown in Table 5. The form is the same as that in (16) except that discrete frequencies 1, 2, 3, 5 

and 6 are used in the approximation for αt. Although the fit (as measured by the aic and bic) is 

not as good as that using continuous frequencies, the Engle-Granger test strongly suggests that 

the residuals are stationary. The time-path of αt using discrete frequencies is shown in Figure 4. 

The approximation seems to work quite well--in comparing Figures 3 and 4, notice that the two 

approximations are quite similar.  

4.5 Missing Variables 
 
 As suggested by Clements and Hendry (1998), a specification error resulting from an 

omitted variable can manifest itself in parameter instability. One major advantage of ‘backing-

out’ the form of αt is that it might help to suggest the missing variable responsible for parameter 

instability. In terms of our money demand analysis, the inclusion of a variable having the time 

profile exhibited in Figure 3 (or Figure 4) might eliminate the parameter instability. To 

demonstrate the point, we included a time trend in the demand for money function such that: 

 αt = a0 + b0 t + (a1 + b1 t)d1 + (a2 + b2 t)d2 (26) 

where: d1 = 1 for 1982:2 < t ≤ 1995:2 and 0 otherwise 

 d2 = 1 for t > 1995:2 and 0 otherwise 

 Thus, instead of using our Fourier approximation, we represent αt by a linear trend with 

breaks in the intercept and slope coefficients occurring at the time periods suggested by Figure 3. 

The estimated money demand function is: 
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 mt = αt + 0.822pt + 0.609yt - 0.004rt (27) 

               (19.16)    (6.59)   (-4.14) 
 
αt = 2.21 + 0.008t + ( 1.64 - 0.014t )d1 + (-0.953 + 0.004t )d2 
       (3.38)   (6.22)    (21.02) (-22.15)        (-9.82)    (6.28) 

 
 aic = -465.27   bic = -437.10 

 The Engle-Granger test indicates that the residuals from (27) are stationary: with four 

lags in the augmented form of the test, the t-statistic on the lagged level of the residuals is –4.79. 

As measured by the aic and bic, this form of the money demand function does not fit the data 

quite as well as those using the Fourier approximation. Moreover, the price and income 

elasticities have been shifted downward.  

 Although the Fourier approximations have better overall properties than (27), we used a 

trend-line containing two breaks for illustrative purposes only. The point is that a Fourier 

approximation can be used to ‘back-out’ the time-varying intercept. As such, the visual depiction 

of the time-varying intercept can be suggestive of a missing explanatory variable. Of course, in 

addition to a broken trend-line, there are other candidate variables. Figure 3 suggests that the 

large decline in wealth following Black Monday in October of 1987 might have been responsible 

for the decline in money demand. As stock prices recovered, the demand for M3 seemed to have 

resumed its upward trend.  

5. Conclusion 

In the paper we developed a simple method that can be used to test for a time-varying 

intercept and to approximate its form. The procedure is solidly grounded in asymptotic theory 

and has good small-sample properties. The method uses a Fourier approximation to capture any 

variation in the intercept term. As such, the issue becomes one of deciding which frequencies to 

include in the approximation. The test for a structural break works nearly as well as the Andrews 
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and Ploberger (1994) optimal test if there is one break and can have substantially more power in 

the presence of multiple breaks. Perhaps, the most important point is that successive applications 

of the test can be used to ‘back-out” the form of the time-varying intercept.  

We explored the nature of the approximation using an extended example concerning the 

demand for M3. Using quarterly U.S. data over the 1959:1 – 2001:1 period, we confirmed the 

standard result that the demand for money is not a stable linear function of real income, the price 

level and a short-term interest rate. The incorporation of the time-varying intercept resulting 

from the Fourier approximation does result in a stable money demand function. Moreover, the 

magnitudes of the coefficients are quite plausible and all are significant at conventional levels. 

The form of the intercept term suggests a fairly steady growth rate in the demand for M3 until 

late-1987. At that point, there was a sharp and sustained drop in demand. Money demand 

continued to decline until mid-1995 and then resumed its upward trend. The implied error-

correction model appears to be reasonable in that money and the price level (but neither income 

nor the interest rate) adjust to eliminate any discrepancy in money demand.  

 There are a number of important limitations of the methodology. First, in a regression 

analysis, a structural break may affect the slope coefficients as well as the intercept. Our 

methodology forces the effects of the structural change to manifest itself only in the intercept 

term. A related point is that the alternative hypothesis in the test is that the residuals are not 

white-noise. It is quite possible that the methodology captures any number of departures from 

white-noise and places them in the intercept term. Third, we have not addressed the issue of out-

of-sample forecasting. Although the Fourier approximation has very good in-sample properties, 

it is not clear how to extend the intercept term beyond the observed data. Our preference is to use 

an average of the last few values of αt for out-of-sample forecasts. However, there are a number 
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of other possibilities that are equally plausible. Anyone who has read the paper to this point can 

certainly add to the list of limitations. Nevertheless, we believe that the methodology explored in 

this paper can be useful for modeling in the presence of structural change.  
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Table 1: Power of the Andrews-Ploberger and Davies Tests with One Break 

Andrews δ  = 0 δ  = 0.5 δ  = 1 
1% 0.008 0.115 0.652 
5% 0.043 0.274 0.825 
10% 0.094 0.399 0.896 
Davies δ  = 0 δ  = 0.5 δ  = 1 
1% 0.007 0.105 0.585 
5% 0.047 0.290 0.794 
10% 0.096 0.409 0.891 
Table 1: Reports size (δ  = 0) and power statistics for Andrews and Davies 
test applied to the process in (11 and 12). Significance evaluated by means 
of bootstrap. 

 
 
 

 
Table 2: Power of the Andrews-Ploberger and Davies Tests with Two Breaks 

Andrews δ  = 0 δ  = 0.5 δ  = 1 
1% 0.008 0.026 0.103 
5% 0.043 0.103 0.294 
10% 0.094 0.185 0.443 
Davies δ  = 0 δ  = 0.5 δ  = 1 
1% 0.007 0.074 0.444 
5% 0.047 0.213 0.671 
10% 0.096 0.335 0.772 
Table 2: Reports size (δ  = 0) and power statistics for Andrews and Davies test 
applied to the process in (13). Significance evaluated by means of bootstrap. 

 
 
 
 

Table 3: Results of the Dickey-Fuller Tests 
 

Variable     Lags t-statistic 
∆m 1 -1.37 
∆y 1   0.41 
∆p 3 -1.85 
∆r 5 -2.88 
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Table 4: Results of the Successive Iterations 

Iteration sup S(θθ) ki* aic bic Ai* Bi* t 

1 53.72 2.49 -169.7 -147.8 -0.025 -0.035 -3.38 

2 87.96 3.45 -303.1 -271.8 0.016 -0.032 -4.33 

3 45.59 1.08 -507.8 -467.1 0.047 -0.064 -5.32 

4 50.57 4.69 -595.7 -545.6 -0.012 -0.016 -6.33 

5 16.35 5.95 -617.6 -558.2 0.008 0.002 -6.43 

6 5.32 na na na na na na 

 NOTE: The critical values for sup S(θ) are 10.58, 12.09, 13.59 and 15.55 at the 10%, 5%, 
2.5% and 1% significance levels, respectively. 

 
 
 
 

Table 5: The Approximation with Discrete Frequencies 

Iteration sup S(θθ) ki* aic bic Ai* Bi* t 

1 41.72 3 -146.2 -124.2 0.020 0.023 -3.76 

2 47.38 2 -210.5 -179.2 0.060 -0.002 -4.13 

3 52.47 1 -485.8 -445.1 0.014 -0.087 -4.98 

4 58.77 5 -599.4 -549.4 -0.021 0.004 -6.49 

5 13.04 6 -612.6 -553.2 0.006 -0.001 -7.02 

6 4.62 8 na na na na na 

 NOTE: The critical values for sup S(θ) are 8.54, 9.98, 11.39 and 13.23 at the 10%, 5%, 
2.5% and 1% significance levels, respectively. 
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Endnotes 
                                                 
1 Let the function α(t) have the Fourier expansion: 
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and define Fs(t) to be the sum of the Fourier coefficients: 
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Then, for any arbitrary positive number h, there exists a number N such that: 

 
| α(t) - Fs(t) |  ≤ h for all s ≥ N. 

2 If T is large, the assumption of the known variance is overly strong; the asymptotic results go 
through using the estimated variance.  
 
3  Since the approximation works extremely well, even for a sample size of 16, we use only the 
approximate forms of the test statistic. Also note that θ need not be chosen such that k is an 
integer; in fact, below we illustrate that fractional values of k can provide good approximations 
to changes in the conditional mean of a series. 
 
4 We found that a direst estimate of the parameters A*, B* and k* in (3) using non-linear least 
squares yields very poor estimates of k*. Instead, estimate (2) using a using the frequency 
obtained for sup S(θ). Note that a direct grid search of (3) yields the same frequency as a grid 
search for sup S(θ). 
 
5 The Andrews-Ploberger test is only included for illustrative purposes--it is well known that it is 
not the optimal test for a double break. 
 
6 Almost identical results to those reported below hold if we use M2 instead of M3.  
 
7 We used a maximum value of k = 8 since we wanted to consider only ‘low frequency’ changes 
in the intercept. Also note that we searched at intervals of 1/512. The results turn out to be 
similar if we use integer frequencies.  
 
8 If we substitute T = 169, k = 8, U = 2*π*k/169 = 0.297, L = 0, and u = 53.72 into (8), we obtain 
9.389 x 10-11.  
 
9 It is well known that for integer values of k, the discrete frequency components in equation (2) 
form an orthogonal basis. 



Figure 1: Four Fourier Approximations to Changes in the Mean
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Panel c: A Temporary Change in the Mean

10 20 30 40 50 60 70 80 90 100

0.0

0.2

0.4

0.6

0.8

1.0

1.2
ALPHA

FITTED

Panel b: Two Breaks in the Mean
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Panel d: Seasonal Changes in the Mean
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Figure 2: Increasing the Number of Freqencies

10 20 30 40 50 60 70 80 90 100
-12.5

-10.0

-7.5

-5.0

-2.5

0.0

2.5

5.0

Actual

1 Frequency

2 Frequencies



 

Figure 3: Intercept of the Demand for Money
(5 Frequencies)
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Figure 4: Intercept of the Demand for Money
(Integer Frequencies)
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