1,381 research outputs found

    Plasma cell granuloma of the supraglottic larynx

    Get PDF
    The occurrence of plasma cell granuloma of the larynx appears to be unusual. Review of the literature revealed only two previously reported cases. We present an additional case of plasma cell granuloma of the larynx. The diagnosis was made by histological and immunohistochemical examinations. The tumour was successfully treated by radiation therap

    Is the Correlation between Storage Capacity and Matrix Reasoning Driven by the Storage of Partial Solutions? A Pilot Study of an Experimental Approach

    Get PDF
    Working memory capacity (WMC) and reasoning abilities—as assessed by figural matrices tests—are substantially correlated. It is controversially discussed whether this correlation is only caused by controlled attention or also by storage capacity. This study aims at investigating storage of partial solutions as a possible mechanism by which storage capacity may contribute to solving figural matrices tests. For this purpose, we analyzed how an experimental manipulation of storage demands changes the pattern of correlations between WMC and performance in a matrix task. We manipulated the storage demands by applying two test formats: one providing the externalization of partial solutions and one without the possibility of externalization. Storage capacity was assessed by different types of change detection tasks. We found substantial correlations between storage capacity and matrices test performance, but they were of comparable size for both test formats. We take this as evidence that the necessity to store partial solutions is not the limiting factor which causes the association between storage capacity and matrices test. It is discussed how this approach can be used to investigate alternative mechanisms by that storage may influence performance in matrices tests

    Nonconventional localizations of cytosolic aminoacyl-tRNA synthetases in yeast and human cells

    Get PDF
    International audienceKeywords: aaRS tRNA Yeast Human Microscopy Fractionation MTS NLS a b s t r a c t By definition, cytosolic aminoacyl-tRNA synthetases (aaRSs) should be restricted to the cytosol of eukary-otic cells where they supply translating ribosomes with their aminoacyl-tRNA substrates. However, it has been shown that other translationally-active compartments like mitochondria and plastids can simultaneously contain the cytosolic aaRS and its corresponding organellar ortholog suggesting that both forms do not share the same organellar function. In addition, a fair number of cytosolic aaRSs have also been found in the nucleus of cells from several species. Hence, these supposedly cytosolic-restricted enzymes have instead the potential to be multi-localized. As expected, in all examples that were studied so far, when the cytosolic aaRS is imported inside an organelle that already contains its bona fide corresponding organellar-restricted aaRSs, the cytosolic form was proven to exert a nonconventional and essential function. Some of these essential functions include regulating homeostasis and protecting against various stresses. It thus becomes critical to assess meticulously the subcellular localization of each of these cytosolic aaRSs to unravel their additional roles. With this objective in mind, we provide here a review on what is currently known about cytosolic aaRSs multi-compartmentalization and we describe all commonly used protocols and procedures for identifying the compartments in which cytosolic aaRSs relocal-ize in yeast and human cells

    Expression in E. coli and characterization of the catalytic domain of Botrytis cinerea chitin synthase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chitin synthase 3a (CHS3a) from <it>Botrytis cinerea </it>(Bc) catalyses the multiple transfer of <it>N</it>-acetylglucosamine (GlcNAc) residues to the growing chitin chain. Chitin, a ÎČ-1,4 linked GlcNAc homopolymer, is an essential cell wall component of filamentous fungi. Chitin synthase, processive membranous protein, has been recognized as a promising target for new antifungicides. Enzymatic characterizations of chitin synthases have been limited, mainly because purity and amounts of integral enzyme obtained after purification procedures have not been sufficient.</p> <p>Findings</p> <p>We undertook the preparation of two BcCHS3a fragment proteins, containing only the central domain and devoid of the N-terminal and transmembrane C-terminal regions. The central domain of CHS3a, named SGC (Spsa GntI Core), is conserved in all UDP-glycosyltransferases and it is believed to contain the active site of the enzyme. CHS3a-SGC protein was totally expressed as inclusion bodies in <it>Escherichia coli</it>. We performed recombinant CHS3a-SGC purification in denaturing conditions, followed by a refolding step. Although circular dichroism spectra clearly exhibited secondary structures of renatured CHS3a-SGC, no chitin synthase activity was detected. Nevertheless CHS3a-SGC proteins show specific binding for the substrate UDP-GlcNAc with a dissociation constant similar to the Michaelis constant and a major contribution of the uracil moiety for recognition was confirmed.</p> <p>Conclusions</p> <p>Milligram-scale quantities of CHS3a-SGC protein with native-like properties such as specific substrate UDP-GlcNAc binding could be easily obtained. These results are encouraging for subsequent heterologous expression of full-length CHS3a.</p

    Vision: a Lightweight Computing Model for Fine-Grained Cloud Computing

    Get PDF
    Cloud systems differ fundamentally in how they offer and charge for resources. While some systems provide a generic programming abstraction at coarse granularity, e.g., a virtual machine rented by the hour, others offer specialized abstractions with fine-grained accounting on a per-request basis. In this paper, we explore Tasklets, an abstraction for instances of short-duration, generic computations that migrate from a host requiring computation to hosts that are willing to provide computation. Tasklets enable fine-grained accounting of resource usage, enabling us to build infrastructure that supports trading computing resources according to various economic models. This computation model is especially attractive in settings where mobile devices can utilize resources in the cloud to mitigate local resource constraints

    Structural elements defining elongation factor Tu mediated suppression of codon ambiguity

    Get PDF
    In most prokaryotes Asn-tRNAAsn and Gln-tRNAGln are formed by amidation of aspartate and glutamate mischarged onto tRNAAsn and tRNAGln, respectively. Coexistence in the organism of mischarged Asp-tRNAAsn and Glu-tRNAGln and the homologous Asn-tRNAAsn and Gln-tRNAGln does not, however, lead to erroneous incorporation of Asp and Glu into proteins, since EF-Tu discriminates the misacylated tRNAs from the correctly charged ones. This property contrasts with the canonical function of EF-Tu, which is to non-specifically bind the homologous aa-tRNAs, as well as heterologous species formed in vitro by aminoacylation of non-cognate tRNAs. In Thermus thermophilus that forms the Asp-tRNAAsn intermediate by the indirect pathway of tRNA asparaginylation, EF-Tu must discriminate the mischarged aminoacyl-tRNAs (aa-tRNA). We show that two base pairs in the tRNA T-arm and a single residue in the amino acid binding pocket of EF-Tu promote discrimination of Asp-tRNAAsn from Asn-tRNAAsn and Asp-tRNAAsp by the protein. Our analysis suggests that these structural elements might also contribute to rejection of other mischarged aa-tRNAs formed in vivo that are not involved in peptide elongation. Additionally, these structural features might be involved in maintaining a delicate balance of weak and strong binding affinities between EF-Tu and the amino acid and tRNA moieties of other elongator aa-tRNAs

    Deinococcus glutaminyl-tRNA synthetase is a chimer between proteins from an ancient and the modern pathways of aminoacyl-tRNA formation

    Get PDF
    Glutaminyl-tRNA synthetase from Deinococcus radiodurans possesses a C-terminal extension of 215 residues appending the anticodon-binding domain. This domain constitutes a paralog of the Yqey protein present in various organisms and part of it is present in the C-terminal end of the GatB subunit of GatCAB, a partner of the indirect pathway of Gln-tRNA(Gln) formation. To analyze the peculiarities of the structure–function relationship of this GlnRS related to the Yqey domain, a structure of the protein was solved from crystals diffracting at 2.3 Å and a docking model of the synthetase complexed to tRNA(Gln) constructed. The comparison of the modeled complex with the structure of the E. coli complex reveals that all residues of E. coli GlnRS contacting tRNA(Gln) are conserved in D. radiodurans GlnRS, leaving the functional role of the Yqey domain puzzling. Kinetic investigations and tRNA-binding experiments of full length and Yqey-truncated GlnRSs reveal that the Yqey domain is involved in tRNA(Gln) recognition. They demonstrate that Yqey plays the role of an affinity-enhancer of GlnRS for tRNA(Gln) acting only in cis. However, the presence of Yqey in free state in organisms lacking GlnRS, suggests that this domain may exert additional cellular functions

    The Complex Evolutionary History of Aminoacyl-tRNA Synthetases

    Get PDF
    Aminoacyl-tRNA synthetases (AARSs) are a superfamily of enzymes responsible for the faithful translation of the genetic code and have lately become a prominent target for synthetic biologists. Our large-scale analysis of \u3e2500 prokaryotic genomes reveals the complex evolutionary history of these enzymes and their paralogs, in which horizontal gene transfer played an important role. These results show that a widespread belief in the evolutionary stability of this superfamily is misconceived. Although AlaRS, GlyRS, LeuRS, IleRS, ValRS are the most stable members of the family, GluRS, LysRS and CysRS often have paralogs, whereas AsnRS, GlnRS, PylRS and SepRS are often absent from many genomes. In the course of this analysis, highly conserved protein motifs and domains within each of the AARS loci were identified and used to build a web-based computational tool for the genome-wide detection of AARS coding sequences. This is based on hidden Markov models (HMMs) and is available together with a cognate database that may be used for specific analyses. The bioinformatics tools that we have developed may also help to identify new antibiotic agents and targets using these essential enzymes. These tools also may help to identify organisms with alternative pathways that are involved in maintaining the fidelity of the genetic code
    • 

    corecore