661 research outputs found
The neutral hydrogen cosmological mass density at z = 5
We present the largest homogeneous survey of z > 4.4 damped Lyα systems (DLAs) using the spectra of 163 QSOs that comprise the Giant Gemini GMOS (GGG) survey. With this survey we make the most precise high-redshift measurement of the cosmological mass density of neutral hydrogen, ΩHi. At such high redshift, important systematic uncertainties in the identification of DLAs are produced by strong intergalactic medium absorption and QSO continuum placement. These can cause spurious DLA detections, result in real DLAs being missed or bias the inferred DLA column density distribution. We correct for these effects using a combination of mock and higher resolution spectra, and show that for the GGG DLA sample the uncertainties introduced are smaller than the statistical errors on ΩHi. We find ΩHI=0.98+0.20−0.18×10−3 at 〈z〉 = 4.9, assuming a 20 per cent contribution from lower column density systems below the DLA threshold. By comparing to literature measurements at lower redshifts, we show that ΩHi can be described by the functional form ΩHI(z)∝(1+z)0.4. This gradual decrease from z = 5 to 0 is consistent with the bulk of H I gas being a transitory phase fuelling star formation, which is continually replenished by more highly ionized gas from the intergalactic medium and from recycled galactic winds
CMB photons shedding light on dark matter
The annihilation or decay of Dark Matter (DM) particles could affect the
thermal history of the universe and leave an observable signature in Cosmic
Microwave Background (CMB) anisotropies. We update constraints on the
annihilation rate of DM particles in the smooth cosmological background, using
WMAP7 and recent small-scale CMB data. With a systematic analysis based on the
Press-Schechter formalism, we also show that DM annihilation in halos at small
redshift may explain entirely the reionization patterns observed in the CMB,
under reasonable assumptions concerning the concentration and formation
redshift of halos. We find that a mixed reionization model based on DM
annihilation in halos as well as star formation at a redshift z~6.5 could
simultaneously account for CMB observations and satisfy constraints inferred
from the Gunn-Peterson effect. However, these models tend to reheat the
inter-galactic medium (IGM) well above observational bounds: by including a
realistic prior on the IGM temperature at low redshift, we find stronger
cosmological bounds on the annihilation cross-section than with the CMB alone.Comment: 35 pages, 14 figures; version accepted in JCAP after minor revision
Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies
sem informaçãoThe epilepsies affect around 65 million people worldwide and have a substantial missing heritability component. We report a genome-wide mega-analysis involving 15,212 individuals with epilepsy and 29,677 controls, which reveals 16 genome-wide significant91sem informaçãosem informaçãosem informaçã
Positivity constraints for lepton polarization in neutrino deep inelastic scattering
We consider the spin polarization of leptons produced in neutrino and
antineutrino nucleon deep inelastic scattering, via charged currents, and we
study the positivity constraints on the spin components in a model independent
way. These results are very important, in particular in the case of
leptons, because the polarization information is crucial in all
future neutrino oscillation experiments.Comment: 14 pages, 4 figure
String Theoretic Bounds on Lorentz-Violating Warped Compactification
We consider warped compactifications that solve the 10 dimensional
supergravity equations of motion at a point, stabilize the position of a
D3-brane world, and admit a warp factor that violates Lorentz invariance along
the brane. This gives a string embedding of ``asymmetrically warped'' models
which we use to calculate stringy (\alpha') corrections to standard model
dispersion relations, paying attention to the maximum speeds for different
particles. We find, from the dispersion relations, limits on gravitational
Lorentz violation in these models, improving on current limits on the speed of
graviton propagation, including those derived from field theoretic loops. We
comment on the viability of models that use asymmetric warping for self-tuning
of the brane cosmological constant.Comment: 20pg, JHEP3; v2 additional references, slight change to intro; v3.
added referenc
Linear Paul trap design for an optical clock with Coulomb crystals
We report on the design of a segmented linear Paul trap for optical clock
applications using trapped ion Coulomb crystals. For an optical clock with an
improved short-term stability and a fractional frequency uncertainty of 10^-18,
we propose 115In+ ions sympathetically cooled by 172Yb+. We discuss the
systematic frequency shifts of such a frequency standard. In particular, we
elaborate on high precision calculations of the electric radiofrequency field
of the ion trap using the finite element method. These calculations are used to
find a scalable design with minimized excess micromotion of the ions at a level
at which the corresponding second- order Doppler shift contributes less than
10^-18 to the relative uncertainty of the frequency standard
A Step Beyond the Bounce: Bubble Dynamics in Quantum Phase Transitions
We study the dynamical evolution of a phase interface or bubble in the
context of a \lambda \phi^4 + g \phi^6 scalar quantum field theory. We use a
self-consistent mean-field approximation derived from a 2PI effective action to
construct an initial value problem for the expectation value of the quantum
field and two-point function. We solve the equations of motion numerically in
(1+1)-dimensions and compare the results to the purely classical evolution. We
find that the quantum fluctuations dress the classical profile, affecting both
the early time expansion of the bubble and the behavior upon collision with a
neighboring interface.Comment: 12 pages, multiple figure
Balloon Measurements of Cosmic Ray Muon Spectra in the Atmosphere along with those of Primary Protons and Helium Nuclei over Mid-Latitude
We report here the measurements of the energy spectra of atmospheric muons
and of the cosmic ray primary proton and helium nuclei in a single experiment.
These were carried out using the MASS superconducting spectrometer in a balloon
flight experiment in 1991. The relevance of these results to the atmospheric
neutrino anomaly is emphasized. In particular, this approach allows
uncertainties caused by the level of solar modulation, the geomagnetic cut-off
of the primaries and possible experimental systematics to be decoupled in the
comparison of calculated fluxes of muons to measured muon fluxes. The muon
observations cover the momentum and depth ranges of 0.3-40 GeV/c and 5-886
g/cmsquared, respectively. The proton and helium primary measurements cover the
rigidity range from 3 to 100 GV, in which both the solar modulation and the
geomagnetic cut-off affect the energy spectra at low energies.Comment: 31 pages, including 17 figures, simplified apparatus figure, to
appear in Phys. Rev.
Stability and collapse of localized solutions of the controlled three-dimensional Gross-Pitaevskii equation
On the basis of recent investigations, a newly developed analytical procedure
is used for constructing a wide class of localized solutions of the controlled
three-dimensional (3D) Gross-Pitaevskii equation (GPE) that governs the
dynamics of Bose-Einstein condensates (BECs). The controlled 3D GPE is
decomposed into a two-dimensional (2D) linear Schr\"{o}dinger equation and a
one-dimensional (1D) nonlinear Schr\"{o}dinger equation, constrained by a
variational condition for the controlling potential. Then, the above class of
localized solutions are constructed as the product of the solutions of the
transverse and longitudinal equations. On the basis of these exact 3D
analytical solutions, a stability analysis is carried out, focusing our
attention on the physical conditions for having collapsing or non-collapsing
solutions.Comment: 21 pages, 14 figure
Magnetic fields in supernova remnants and pulsar-wind nebulae
We review the observations of supernova remnants (SNRs) and pulsar-wind
nebulae (PWNe) that give information on the strength and orientation of
magnetic fields. Radio polarimetry gives the degree of order of magnetic
fields, and the orientation of the ordered component. Many young shell
supernova remnants show evidence for synchrotron X-ray emission. The spatial
analysis of this emission suggests that magnetic fields are amplified by one to
two orders of magnitude in strong shocks. Detection of several remnants in TeV
gamma rays implies a lower limit on the magnetic-field strength (or a
measurement, if the emission process is inverse-Compton upscattering of cosmic
microwave background photons). Upper limits to GeV emission similarly provide
lower limits on magnetic-field strengths. In the historical shell remnants,
lower limits on B range from 25 to 1000 microGauss. Two remnants show
variability of synchrotron X-ray emission with a timescale of years. If this
timescale is the electron-acceleration or radiative loss timescale, magnetic
fields of order 1 mG are also implied. In pulsar-wind nebulae, equipartition
arguments and dynamical modeling can be used to infer magnetic-field strengths
anywhere from about 5 microGauss to 1 mG. Polarized fractions are considerably
higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field
geometries often suggest a toroidal structure around the pulsar, but this is
not universal. Viewing-angle effects undoubtedly play a role. MHD models of
radio emission in shell SNRs show that different orientations of upstream
magnetic field, and different assumptions about electron acceleration, predict
different radio morphology. In the remnant of SN 1006, such comparisons imply a
magnetic-field orientation connecting the bright limbs, with a non-negligible
gradient of its strength across the remnant.Comment: 20 pages, 24 figures; to be published in SpSciRev. Minor wording
change in Abstrac
- …