349 research outputs found

    Vaccine semantics : Automatic methods for recognizing, representing, and reasoning about vaccine-related information

    Get PDF
    Post-marketing management and decision-making about vaccines builds on the early detection of safety concerns and changes in public sentiment, the accurate access to established evidence, and the ability to promptly quantify effects and verify hypotheses about the vaccine benefits and risks. A variety of resources provide relevant information but they use different representations, which makes rapid evidence generation and extraction challenging. This thesis presents automatic methods for interpreting heterogeneously represented vaccine information. Part I evaluates social media messages for monitoring vaccine adverse events and public sentiment in social media messages, using automatic methods for information recognition. Parts II and III develop and evaluate automatic methods and res

    Mirroring E-service for Brick and Mortar Retail: An Assessment and Survey

    Get PDF
    The digital transformation increasingly impacts the competitive retail market structure in favor of e-commerce and digital business models, while many Brick and Mortar (BaM) retailers are struggling to meet customers’ expectations. Supported by the customer adaption of e-commerce and digital technologies, this paper applies the lens of channel complementary theory to BaM. We examine, which e-service touchpoints from e-commerce can be transferred to the physical servicescape of BaM retail to complement customer journeys. Drawing from the dominant design theory, we first assess leading e-commerce solutions to identify dominant e-service touchpoints, which are then mirrored for their application in BaM retail. Second, we surveyed 250 shoppers to elicit the likeliness of use regarding these touchpoints. Our results provide a foundation for both academia and retail to advance the knowledge of relevant e-service touchpoints in BaM

    The meaning of chakin placed on koita, as the evidence that temae has changed

    Get PDF
    textabstractIntroduction: There is growing interest in whether social media can capture patient-generated information relevant for medicines safety surveillance that cannot be found in traditional sources. Objective: The aim of this study was to evaluate the potential contribution of mining social media networks for medicines safety surveillance using the following associations as case studies: (1) rosiglitazone and cardiovascular events (i.e. stroke and myocardial infarction); and (2) human papilloma virus (HPV) vaccine and infertility. Methods: We collected publicly accessible, English-language posts on Facebook, Google+, and Twitter until September 2014. Data were queried for co-occurrence of keywords related to the drug/vaccine and event of interest within a post. Messages were analysed with respect to geographical distribution, context, linking to other web content, and author’s assertion regarding the supposed association. Results: A total of 2537 posts related to rosiglitazone/cardiovascular events and 2236 posts related to HPV vaccine/infertility were retrieved, with the majority of posts representing data from Twitter (98 and 85 %, respectively) and originating from users in the US. Approximately 21 % of rosiglitazone-related posts and 84 % of HPV vaccine-related posts referenced other web pages, mostly news items, law firms’ websites, or blogs. Assertion analysis predominantly showed affirmation of the association of rosiglitazone/cardiovascular events (72 %; n = 1821) and of HPV vaccine/infertility (79 %; n = 1758). Only ten posts described personal accounts of rosiglitazone/cardiovascular adverse event experiences, and nine posts described HPV vaccine problems related to infertility. Conclusions: Publicly available data from the considered social media networks were sparse and largely untrackable for the purpose of providing early clues of safety concerns regarding the prespecified case studies. Further research investigating other case studies and exploring other social media platforms are necessary to further characterise the usefulness of social media for safety surveillance

    Explaining Counterexamples with Giant-Step Assertion Checking

    Get PDF
    International audienceIdentifying the cause of a proof failure during deductive verification of programs is hard: it may be due to an incorrectness in the program, an incompleteness in the program annotations, or an incompleteness of the prover. The changes needed to resolve a proof failure depend on its category, but the prover cannot provide any help on the categorisation. When using an SMT solver to discharge a proof obligation, that solver can propose a model from a failed attempt, from which a possible counterexample can be derived. But the counterexample may be invalid, in which case it may add more confusion than help. To check the validity of a counterexample and to categorise the proof failure, we propose the comparison between the run-time assertion-checking (RAC) executions under two different semantics, using the counterexample as an oracle. The first RAC execution follows the normal program semantics, and a violation of a program annotation indicates an incorrectness in the program. The second RAC execution follows a novel "giant-step" semantics that does not execute loops nor function calls but instead retrieves return values and values of modified variables from the oracle. A violation of the program annotations only observed under giant-step execution characterises an incompleteness of the program annotations. We implemented this approach in the Why3 platform for deductive program verification and evaluated it using examples from prior literature

    Alignment of vaccine codes using an ontology of vaccine descriptions

    Get PDF
    BACKGROUND: Vaccine information in European electronic health record (EHR) databases is represented using various clinical and database-specific coding systems and drug vocabularies. The lack of harmonization constitutes a challenge in reusing EHR data in collaborative benefit-risk studies about vaccines. METHODS: We designed an ontology of the properties that are commonly used in vaccine descriptions, called Ontology of Vaccine Descriptions (VaccO), with a dictionary for the analysis of multilingual vaccine descriptions. We implemented five algorithms for the alignment of vaccine coding systems, i.e., the identification of corresponding codes from different coding ystems, based on an analysis of the code descriptors. The algorithms were evaluated by comparing their results with manually created alignments in two reference sets including clinical and database-specific coding systems with multilingual code descriptors. RESULTS: The best-performing algorithm represented code descriptors as logical statements about entities in the VaccO ontology and used an ontology reasoner to infer common properties and identify corresponding vaccine codes. The evaluation demonstrated excellent performance of the approach (F-scores 0.91 and 0.96). CONCLUSION: The VaccO ontology allows the identification, representation, and comparison of heterogeneous descriptions of vaccines. The automatic alignment of vaccine coding systems can accelerate the readiness of EHR databases in collaborative vaccine studies

    Extraction of chemical-induced diseases using prior knowledge and textual information

    Get PDF
    We describe our approach to the chemical–disease relation (CDR) task in the BioCreative V challenge. The CDR task consists of two subtasks: automatic disease-named entity recognition and normalization (DNER), and extraction of chemical-induced diseases (CIDs) from Medline abstracts. For the DNER subtask, we used our concept recognition tool Peregrine, in combination with several optimization steps. For the CID subtask, our system, which we named RELigator, was trained on a rich feature set, comprising features derived from a graph database containing prior knowledge about chemicals and diseases, and linguistic and statistical features derived from the abstracts in the CDR training corpus. We describe the systems that were developed and present evaluation results for both subtasks on the CDR test set. For DNER, our Peregrine system reached an F-score of 0.757. For CID, the system achieved an F-score of 0.526, which ranked second among 18 participating teams. Several post-challenge modifications of the systems resulted in substantially improved F-scores (0.828 for DNER and 0.602 for CID). RELigator is available as a web service at http://biosemantics.org/index.php/software/religator

    Extraction of chemical-induced diseases using prior knowledge and textual information

    Get PDF
    We describe our approach to the chemical-disease relation (CDR) task in the BioCreative V challenge. The CDR task consists of two subtasks: Automatic disease-named entity recognition and normalization (DNER), and extraction of chemical-induced diseases (CIDs) from Medline abstracts. For the DNER subtask, we used our concept recognition tool Peregrine, in combination with several optimization steps. For the CID subtask, our system, which we named RELigator, was trained on a rich feature set, comprising features derived from a graph database containing prior knowledge about chemicals and diseases, and linguistic and statistical features derived from the abstracts in the CDR training corpus. We describe the systems that were developed and present evaluation results for both subtasks on the CDR test set. For DNER, our Peregrine system reached an F-score of 0.757. For CID, the system achieved an F-score of 0.526, which ranked second among 18 participating teams. Several post-challenge modifications of the systems resulted in substantially improved F-scores (0.828 for DNER and 0.602 for CID)
    corecore