99 research outputs found

    Torts

    Get PDF
    Tort

    Torts

    Get PDF
    Tort

    Linking Human Diseases to Animal Models Using Ontology-Based Phenotype Annotation

    Get PDF
    A novel method for quantifying the similarity between phenotypes by the use of ontologies can be used to search for candidate genes, pathway members, and human disease models on the basis of phenotypes alone

    Acute and repetitive fronto-cerebellar tDCS stimulation improves mood in non-depressed participants

    Get PDF

    Astrocytes: biology and pathology

    Get PDF
    Astrocytes are specialized glial cells that outnumber neurons by over fivefold. They contiguously tile the entire central nervous system (CNS) and exert many essential complex functions in the healthy CNS. Astrocytes respond to all forms of CNS insults through a process referred to as reactive astrogliosis, which has become a pathological hallmark of CNS structural lesions. Substantial progress has been made recently in determining functions and mechanisms of reactive astrogliosis and in identifying roles of astrocytes in CNS disorders and pathologies. A vast molecular arsenal at the disposal of reactive astrocytes is being defined. Transgenic mouse models are dissecting specific aspects of reactive astrocytosis and glial scar formation in vivo. Astrocyte involvement in specific clinicopathological entities is being defined. It is now clear that reactive astrogliosis is not a simple all-or-none phenomenon but is a finely gradated continuum of changes that occur in context-dependent manners regulated by specific signaling events. These changes range from reversible alterations in gene expression and cell hypertrophy with preservation of cellular domains and tissue structure, to long-lasting scar formation with rearrangement of tissue structure. Increasing evidence points towards the potential of reactive astrogliosis to play either primary or contributing roles in CNS disorders via loss of normal astrocyte functions or gain of abnormal effects. This article reviews (1) astrocyte functions in healthy CNS, (2) mechanisms and functions of reactive astrogliosis and glial scar formation, and (3) ways in which reactive astrocytes may cause or contribute to specific CNS disorders and lesions

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    Function and developmental origin of a mesocortical inhibitory circuit

    No full text
    Midbrain ventral tegmental neurons project to the prefrontal cortex and modulate cognitive functions. Using viral tracing, optogenetics and electrophysiology, we found that mesocortical neurons in the mouse ventrotegmental area provide fast glutamatergic excitation of GABAergic interneurons in the prefrontal cortex and inhibit prefrontal cortical pyramidal neurons in a robust and reliable manner. These mesocortical neurons were derived from a subset of dopaminergic progenitors, which were dependent on prolonged Sonic Hedgehog signaling for their induction. Loss of these progenitors resulted in the loss of the mesocortical inhibitory circuit and an increase in perseverative behavior, whereas mesolimbic and mesostriatal dopaminergic projections, as well as impulsivity and attentional function, were largely spared. Thus, we identified a previously uncharacterized mesocortical circuit contributing to perseverative behaviors and found that the diversity of dopaminergic neurons begins to be established during their progenitor phase
    corecore