117 research outputs found

    Uromodulin is expressed in renal primary cilia and UMOD mutations result in decreased ciliary uromodulin expression

    Get PDF
    Uromodulin (UMOD) mutations are responsible for three autosomal dominant tubulo-interstitial nephropathies including medullary cystic kidney disease type 2 (MCKD2), familial juvenile hyperuricemic nephropathy and glomerulocystic kidney disease. Symptoms include renal salt wasting, hyperuricemia, gout, hypertension and end-stage renal disease. MCKD is part of the ‘nephronophthisis-MCKD complex', a group of cystic kidney diseases. Both disorders have an indistinguishable histology and renal cysts are observed in either. For most genes mutated in cystic kidney disease, their proteins are expressed in the primary cilia/basal body complex. We identified seven novel UMOD mutations and were interested if UMOD protein was expressed in the primary renal cilia of human renal biopsies and if mutant UMOD would show a different expression pattern compared with that seen in control individuals. We demonstrate that UMOD is expressed in the primary cilia of renal tubules, using immunofluorescent studies in human kidney biopsy samples. The number of UMOD-positive primary cilia in UMOD patients is significantly decreased when compared with control samples. Additional immunofluorescence studies confirm ciliary expression of UMOD in cell culture. Ciliary expression of UMOD is also confirmed by electron microscopy. UMOD localization at the mitotic spindle poles and colocalization with other ciliary proteins such as nephrocystin-1 and kinesin family member 3A is demonstrated. Our data add UMOD to the group of proteins expressed in primary cilia, where mutations of the gene lead to cystic kidney diseas

    Long-Term Transplantation Outcomes in Patients With Primary Hyperoxaluria Type 1 Included in the European Hyperoxaluria Consortium (OxalEurope) Registry

    Get PDF
    INTRODUCTION: In primary hyperoxaluria type 1 (PH1), oxalate overproduction frequently causes kidney stones, nephrocalcinosis, and kidney failure. As PH1 is caused by a congenital liver enzyme defect, combined liver–kidney transplantation (CLKT) has been recommended in patients with kidney failure. Nevertheless, systematic analyses on long-term transplantation outcomes are scarce. The merits of a sequential over combined procedure regarding kidney graft survival remain unclear as is the place of isolated kidney transplantation (KT) for patients with vitamin B6-responsive genotypes. METHODS: We used the OxalEurope registry for retrospective analyses of patients with PH1 who underwent transplantation. Analyses of crude Kaplan–Meier survival curves and adjusted relative hazards from the Cox proportional hazards model were performed. RESULTS: A total of 267 patients with PH1 underwent transplantation between 1978 and 2019. Data of 244 patients (159 CLKTs, 48 isolated KTs, 37 sequential liver–KTs [SLKTs]) were eligible for comparative analyses. Comparing CLKTs with isolated KTs, adjusted mortality was similar in patients with B6-unresponsive genotypes but lower after isolated KT in patients with B6-responsive genotypes (adjusted hazard ratio 0.07, 95% CI: 0.01–0.75, P = 0.028). CLKT yielded higher adjusted event-free survival and death-censored kidney graft survival in patients with B6-unresponsive genotypes (P = 0.025, P < 0.001) but not in patients with B6-responsive genotypes (P = 0.145, P = 0.421). Outcomes for 159 combined procedures versus 37 sequential procedures were comparable. There were 12 patients who underwent pre-emptive liver transplantation (PLT) with poor outcomes. CONCLUSION: The CLKT or SLKT remains the preferred transplantation modality in patients with PH1 with B6-unresponsive genotypes, but isolated KT could be an alternative approach in patients with B6-responsive genotypes

    Determinants of Kidney Failure in Primary Hyperoxaluria Type 1:Findings of the European Hyperoxaluria Consortium

    Get PDF
    INTRODUCTION: Primary hyperoxaluria type 1 (PH1) has a highly heterogeneous disease course. Apart from the c.508G&gt;A (p.Gly170Arg) AGXT variant, which imparts a relatively favorable outcome, little is known about determinants of kidney failure. Identifying these is crucial for disease management, especially in this era of new therapies. METHODS: In this retrospective study of 932 patients with PH1 included in the OxalEurope registry, we analyzed genotype-phenotype correlations as well as the impact of nephrocalcinosis, urolithiasis, and urinary oxalate and glycolate excretion on the development of kidney failure, using survival and mixed model analyses.RESULTS: The risk of developing kidney failure was the highest for 175 vitamin-B6 unresponsive ("null") homozygotes and lowest for 155 patients with c.508G&gt;A and c.454T&gt;A (p.Phe152Ile) variants, with a median age of onset of kidney failure of 7.8 and 31.8 years, respectively. Fifty patients with c.731T&gt;C (p.Ile244Thr) homozygote variants had better kidney survival than null homozygotes ( P = 0.003). Poor outcomes were found in patients with other potentially vitamin B6-responsive variants. Nephrocalcinosis increased the risk of kidney failure significantly (hazard ratio [HR] 3.17 [2.03-4.94], P &lt; 0.001). Urinary oxalate and glycolate measurements were available in 620 and 579 twenty-four-hour urine collections from 117 and 87 patients, respectively. Urinary oxalate excretion, unlike glycolate, was higher in patients who subsequently developed kidney failure ( P = 0.034). However, the 41% intraindividual variation of urinary oxalate resulted in wide confidence intervals. CONCLUSION: In conclusion, homozygosity for AGXT null variants and nephrocalcinosis were the strongest determinants for kidney failure in PH1. </p

    ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling

    Get PDF
    Nephrotic syndrome (NS) is divided into steroid-sensitive (SSNS) and -resistant (SRNS) variants. SRNS causes end-stage kidney disease, which cannot be cured. While the disease mechanisms of NS are not well understood, genetic mapping studies suggest a multitude of unknown single-gene causes. We combined homozygosity mapping with whole-exome resequencing and identified an ARHGDIA mutation that causes SRNS. We demonstrated that ARHGDIA is in a complex with RHO GTPases and is prominently expressed in podocytes of rat glomeruli. ARHGDIA mutations (R120X and G173V) from individuals with SRNS abrogated interaction with RHO GTPases and increased active GTP-bound RAC1 and CDC42, but not RHOA, indicating that RAC1 and CDC42 are more relevant to the pathogenesis of this SRNS variant than RHOA. Moreover, the mutations enhanced migration of cultured human podocytes; however, enhanced migration was reversed by treatment with RAC1 inhibitors. The nephrotic phenotype was recapitulated in arhgdia-deficient zebrafish. RAC1 inhibitors were partially effective in ameliorating arhgdia-associated defects. These findings identify a single-gene cause of NS and reveal that RHO GTPase signaling is a pathogenic mediator of SRNS.ope

    Diverse molecular causes of unsolved autosomal dominant tubulointerstitial kidney diseases

    Get PDF
    Autosomal Dominant Tubulointerstitial Kidney Disease (ADTKD) is caused by mutations in one of at least five genes and leads to kidney failure usually in mid adulthood. Throughout the literature, variable numbers of families have been reported, where no mutation can be found and therefore termed ADTKD-not otherwise specified. Here, we aim to clarify the genetic cause of their diseases in our ADTKD registry. Sequencing for all known ADTKD genes was performed, followed by SNaPshot minisequencing for the dupC (an additional cytosine within a stretch of seven cytosines) mutation of MUC1. A virtual panel containing 560 genes reported in the context of kidney disease (nephrome) and exome sequencing were then analyzed sequentially. Variants were validated and tested for segregation. In 29 of the 45 registry families, mutations in known ADTKD genes were found, mostly in MUC1. Sixteen families could then be termed ADTKD-not otherwise specified, of which nine showed diagnostic variants in the nephrome (four in COL4A5, two in INF2 and one each in COL4A4, PAX2, SALL1 and PKD2). In the other seven families, exome sequencing analysis yielded potential disease associated variants in novel candidate genes for ADTKD; evaluated by database analyses and genome-wide association studies. For the great majority of our ADTKD registry we were able to reach a molecular genetic diagnosis. However, a small number of families are indeed affected by diseases classically described as a glomerular entity. Thus, incomplete clinical phenotyping and atypical clinical presentation may have led to the classification of ADTKD. The identified novel candidate genes by exome sequencing will require further functional validation

    A new era of treatment for primary hyperoxaluria type 1

    No full text
    New data from the ILLUMINATE-A trial of lumasiran demonstrate the safety and efficacy of this RNA interference therapeutic in patients with primary hyperoxaluria type 1. Further studies are required to investigate the potential long-term benefits of this promising therapy

    Genetic kidney stone disesases

    No full text
    The incidence and prevalence of stone diseases have significantly increased over the last few years. It is crucial to correctly diagnose the underlying condition to initiate proper treatment as early as possible and thus prevent devastating consequences such as end-stage renal failure. In up to 75% of pediatric patients genetic or anatomical causes can be identified. The various underlying conditions are presented here according to each lithogenic risk factor and, if available, the appropriate therapeutic approaches are elucidated

    Steroid-resistent nephrotic syndrome

    No full text
    Steroid-resistant nephrotic syndrome (SRNS), together with the histomorphological correlate focal segmental glomerulosclerosis (FSGS), is a leading cause of end-stage renal disease (ESRD) in older children, adolescents, and adults. The disease spectrum is characterized by great genetic heterogeneity, but nongenetic causes are also observed in FSGS. The genetic basis of SRNS/FSGS in adolescents and adults is far from being completely understood. Reliable discrimination of the genetic causes of SRNS/FSGS is imperative, as there are already numerous clinical implications. The identification of new disease-causing alleles and genes will enhance our understanding of the underlying pathomechanisms. Using extensive genetic testing there is the possibility of finding the unresolved genetic basis for the recurrence of FSGS in patients without a genetic variant

    Tasic V. Late diagnosis of primary hyperoxaluria after failed kidney transplantation. Int Urol Nephrol

    No full text
    Abstract Primary hyperoxaluria type 1 (PH1) is a rare autosomal recessive inborn error of the glyoxylate metabolism that is based on absence, deficiency or mislocalization of the liver-specific peroxisomal enzyme alanine:glyoxylate aminotransferase. Hyperoxaluria leads to recurrent formation of calculi and/or nephrocalcinosis and often early end-stage renal disease (ESRD) accompanied by systemic calcium oxalate crystal deposition. In this report, we describe an adult female patient with only one stone passage before development of ESRD. With unknown diagnosis of PH, the patient received an isolated kidney graft and developed an early onset of graft failure. Although initially presumed as an acute rejection, the biopsy revealed calcium oxalate crystals, which then raised a suspicion of primary hyperoxaluria. The diagnosis was later confirmed by hyperoxaluria, elevated plasma oxalate levels and mutation of the AGXT gene, showing the patient to be compound heterozygous for the c.33_34InsC and c.508G [ A mutations. Plasma oxalate levels did not decrease after high-dose pyridoxine treatment. Based on this case report, we would recommend in all patients even with a minor history of nephrolithiasis but progression to chronic renal failure to exclude primary hyperoxaluria before isolated kidney transplantation is considered
    corecore