119 research outputs found

    The Relationship between Physical Activity and Bone during Adolescence Differs according to Sex and Biological Maturity

    Get PDF
    This study examines the relationships between bone mass, physical activity, and maturational status in healthy adolescent boys and girls. Methods. Ninety-nine early high-school (Year 9) students were recruited. Physical activity and other lifestyle habits were recorded via questionnaire. Anthropometrics, muscle power, calcaneal broadband ultrasound attenuation (BUA), bone mineral content (BMC), and lean tissue mass were measured. Maturity was determined by Tanner stage and estimated age of peak height velocity (APHV). Results. Boys had greater APHV, weight, height, muscle power, and dietary calcium than girls (P < .05). Boys exhibited greater femoral neck BMC and trochanteric BMC while girls had higher BUA and spine BMAD (P < .05). Physical activity and vertical jump predicted BMAD and BUA most strongly for boys whereas years from APHV were the strongest predictor for girls. Conclusion. Sex-specific relationships exist between physical activity, maturity and bone mass during adolescence

    Thermal Performance of MR-16 Light Emitting Diode Products

    Get PDF
    The thermal properties of Light Emitting Diode (LED) products have a significant impact on their longevity and overall performance. Products which are unable to adequately dissipate heat degrade, shortening the projected lifespan. A testing apparatus has been constructed to characterize the thermal behavior of MR-16 LED products. This paper documents the testing setup and measurement results for 9 separate products, and identifies product characteristics which demonstrate higher success at heat dissipation. The thermal performance was quantified using experimental data and heat transfer models. Calculations to quantify the magnitude of heat transferred through radiation and convection in each LED product were performed. Results indicate some of the products are better optimized to enhance convection heat transfer

    Identifying Homogeneous Patterns of Injury in Paediatric Trauma Patients to Improve Risk-Adjusted Models of Mortality and Functional Outcomes

    Get PDF
    Injury is a leading cause of morbidity and mortality in the paediatric population and exhibits complex injury patterns. This study aimed to identify homogeneous groups of paediatric major trauma patients based on their profile of injury for use in mortality and functional outcomes risk-adjusted models. Data were extracted from the population-based Victorian State Trauma Registry for patients aged 0-15 years, injured 2006-2016. Four Latent Class Analysis (LCA) models with/without covariates of age/sex tested up to six possible latent classes. Five risk-adjusted models of in-hospital mortality and 6-month functional outcomes incorporated a combination of Injury Severity Score (ISS), New ISS (NISS), and LCA classes. LCA models replicated the best log-likelihood and entropy > 0.8 for all models (N = 1281). Four latent injury classes were identified: isolated head; isolated abdominal organ; multi-trauma injuries, and other injuries. The best models, in terms of goodness of fit statistics and model diagnostics, included the LCA classes and NISS. The identification of isolated head, isolated abdominal, multi-trauma and other injuries as key latent paediatric injury classes highlights areas for emphasis in planning prevention initiatives and paediatric trauma system development. Future risk-adjusted paediatric injury models that include these injury classes with the NISS when evaluating mortality and functional outcomes is recommended

    Seasonal change in bone, muscle and fat in professional rugby league players and its relationship to injury: A cohort study

    Get PDF
    OBJECTIVES: To examine the anthropometric characteristics of an Australian National Rugby League team and identify the relationship to type and incidence of injuries sustained during a professional season. It was hypothesised that body composition would not change discernibly across a season and that injury would be negatively related to preseason bone and muscle mass. DESIGN: A repeated measure, prospective, observational, cohort study. SETTING: Griffith University, Gold Coast, Australia. PARTICIPANTS: 37 professional male Australian National Rugby League players, 24.3 (3.8) years of age were recruited for preseason 1 testing, of whom 25 were retested preseason 2. PRIMARY AND SECONDARY OUTCOME MEASURES: Primary outcome measures included biometrics; body composition (bone, muscle and fat mass; dual-energy x-ray absorptiometry; XR800, Norland Medical Systems, Inc); bone geometry and strength (peripheral quantitative CT; XCT 3000, Stratec); calcaneal broadband ultrasound attenuation (BUA; QUS-2, Quidel); diet and physical activity history. Secondary outcome measures included player injuries across a single playing season. RESULTS: Lean mass decreased progressively throughout the season (pre=81.45(7.76) kg; post=79.89(6.72) kg; p≤0.05), while whole body (WB) bone mineral density (BMD) increased until mid-season (pre=1.235(0.087) g/cm(2); mid=1.296(0.093) g/cm(2); p≤0.001) then decreased thereafter (post=1.256(0.100); p≤0.001). Start-of-season WB BMD, fat and lean mass, weight and tibial mass measured at the 38% site predicted bone injury incidence, but no other relationship was observed between body composition and injury. CONCLUSIONS: Significant anthropometric changes were observed in players across a professional rugby league season, including an overall loss of muscle and an initial increase, followed by a decrease in bone mass. Strong relationships between anthropometry and incidence of injury were not observed. Long-term tracking of large rugby league cohorts is indicated to obtain more injury data in order to examine anthropometric relationships with greater statistical power

    Profiles of recruits entering army basic training in new zealand

    Get PDF
    Introduction A high incidence of musculoskeletal injuries is sustained by army recruits during basic training. Describing recruits’ personal, lifestyle, and physical performance characteristics at the entry to training can help identify existing intrinsic risk factors that may predispose some recruits to injury. Identifying modifiable and preventable intrinsic risk factors may contribute to lower recruit injury and associated burdens during the course of basic training. The aim of this study was to therefore describe the profile of New Zealand Army recruits upon entry to basic training using personal, lifestyle, and physical performance characteristics. Methods New Zealand Army male and female recruits from two intakes in the same year were invited to participate. Recruits’ data on personal (sex, age, height, and weight), lifestyle (self-reported responses to the Military Pre-training Questionnaire comprising physical and injury history, diet, alcohol, and smoking status) and physical performance characteristics (2.4-km timed run, weight-bearing dorsiflexion lunge test, and the Y Balance TestTM for lower limb dynamic stability) were collected and analyzed. Results Participants included 248 New Zealand Army recruits: 228 males (91.9%), 20 females (8.1%), average age of 20.3 ± 2.8 years. Findings indicated 30.9% of recruits reported injury in the 12 months prior to training commencing, with 44.8% of those injuries in the lower limbs. Pre-entry alcohol consumption was higher than recommended and 20.1% of recruits identified as current smokers. Recruits who passed the 2.4-km timed run included 53.8% of males and 28.6% of females. Weight-bearing dorsiflexion lunge test performance was within a normal range (right = 10.3 ± 3.3 cm), however limb asymmetry (>1.5 cm) was present with 30.9% of recruits. For the Y Balance TestTM for dynamic lower limb stability, 70% of female recruits had high posterolateral reach asymmetry (8.1 ± 6.0 cm), while normalized composite reach scores were low (right) for male (92.2 ± 8.1%) and female recruits (89.0 ± 7.5%). Conclusions New Zealand Army recruits entering basic training were predominantly active young males, reported few injuries in the previous year, had higher than recommended alcohol consumption and a minority were smokers. The majority of recruits had low aerobic fitness, average ankle dorsiflexion range, and low dynamic lower limb stability. While a number of adverse characteristics identified are potentially modifiable, more research is required to identify an association to musculoskeletal injury risk in New Zealand Army recruits. Describing the profile of recruits entering training, particularly recruits at risk of injury is one of the first steps in injury prevention

    Suboptimal bone status for adolescents with low motor competence and developmental coordination disorder - It\u27s sex specific

    Get PDF
    Background: Australian adolescents with low motor competence (LMC) have higher fracture rates and poorer bone health compared to European normative data, but currently no normative data exists for Australians. Aims: To examine whether there were bone health differences in Australian adolescents with LMC or Developmental Coordination Disorder (DCD) when compared to typically developing age-matched Australian adolescents. Methods and Procedures: Australian adolescents aged 12–18 years with LMC/DCD (n=39; male=27; female=12) and an Australian comparison sample (n=188; boys=101; girls= 87) undertook radial and tibial peripheral Quantitative Computed Tomography (pQCT) scans. Stress Strain Index (SSI (mm3)), Total Bone Area (TBA (mm2)), Muscle Density (MuD [mgcm3]), Muscle Area (MuA [cm2]), Subcutaneous Fat Area (ScFA [cm2]), Cortical Density (CoD [mgcm3]), Cortical Area (CoD [mm2]), cortical concentric ring volumetric densities, Functional Muscle Bone Unit Index (FMBU: (SSI/bone length)) and Robustness Index (SSI/bone length^3), group and sex differences were examined. Outcome and Results: The main finding was a significant sex-x-group interaction for Tibial FMBU (p=.021), Radial MuD (p=.036), and radial ScFA (p=.002). Boys with LMC/DCD had lower tibial FMBU scores, radial MuD and higher ScFA than the typically developing age-matched sample. Conclusion and Implications: Comparisons of bone measures with Australian comparative data are similar to European findings however sex differences were found in the present study. Australian adolescent boys with LMC/DCD had less robust bones compared to their well-coordinated Australian peers, whereas there were no differences between groups for girls. These differences may be due to lower levels of habitual weight–bearing physical activity, which may be more distinct in adolescent boys with LMC/DCD compared to girls

    Incidence, Costs and Predictors of Non-Union, Delayed Union and Mal-Union Following Long Bone Fracture

    Get PDF
    Fracture healing complications are common and result in significant healthcare burden. The aim of this study was to determine the rate, costs and predictors of two-year readmission for surgical management of healing complications (delayed, mal, non-union) following fracture of the humerus, tibia or femur. Humeral, tibial and femoral (excluding proximal) fractures registered by the Victorian Orthopaedic Trauma Outcomes Registry over five years (n = 3962) were linked with population-level hospital admissions data to identify two-year readmissions for delayed, mal or non-union. Study outcomes included hospital length-of-stay (LOS) and inpatient costs. Multivariable logistic regression was used to determine demographic and injury-related factors associated with admission for fracture healing complications. Of the 3886 patients linked, 8.1% were readmitted for healing complications within two years post-fracture, with non-union the most common complication and higher rates for femoral and tibial shaft fractures. Admissions for fracture healing complications incurred total costs of $4.9 million AUD, with a median LOS of two days. After adjusting for confounders, patients had higher odds of developing complications if they were older, receiving compensation or had tibial or femoral shaft fractures. Patients who are older, with tibial and femoral shaft fractures should be targeted for future research aimed at preventing complications

    Are Bone and Muscle Changes from POWER PE, an 8-month In-school Jumping Intervention, Maintained at Three Years?

    Get PDF
    Our aim was to determine if the musculoskeletal benefits of a twice-weekly, school-based, jumping regime in healthy adolescent boys and girls were maintained three years later. Subjects of the original POWER PE trial (n = 99) were contacted and asked to undergo retesting three years after cessation of the intervention. All original measures were completed including: sitting height, standing height, weight, calcaneal broadband ultrasound attenuation (BUA), whole body, hip and spine bone mineral content (BMC), lean tissue mass, and fat mass. Physical activity was recorded with the bone-specific physical activity questionnaire (BPAQ) and calcium intake was estimated with a calcium-focussed food questionnaire. Maturity was determined by Tanner staging and estimation of the age of peak height velocity (PHV). Twenty-nine adolescents aged 17.3±0.4 years agreed to participate. Three years after the intervention, there were no differences in subject characteristics between control and intervention groups (p>0.05). Three-year change in weight, lean mass, and fat mass were similar between groups (p>0.05). There were no significant group differences in three-year change in BUA or BMC at any site (p>0.05), although the between-group difference in femoral neck BMC at follow-up exceeded the least significant change. While significant group differences were not observed three years after cessation of the intervention, changes in bone parameters occurred in parallel for intervention and control groups such that the original benefits of the intervention observed within the treatment group were sustained

    Sequence-based prediction for vaccine strain selection and identification of antigenic variability in foot-and-mouth disease virus

    Get PDF
    Identifying when past exposure to an infectious disease will protect against newly emerging strains is central to understanding the spread and the severity of epidemics, but the prediction of viral cross-protection remains an important unsolved problem. For foot-and-mouth disease virus (FMDV) research in particular, improved methods for predicting this cross-protection are critical for predicting the severity of outbreaks within endemic settings where multiple serotypes and subtypes commonly co-circulate, as well as for deciding whether appropriate vaccine(s) exist and how much they could mitigate the effects of any outbreak. To identify antigenic relationships and their predictors, we used linear mixed effects models to account for variation in pairwise cross-neutralization titres using only viral sequences and structural data. We identified those substitutions in surface-exposed structural proteins that are correlates of loss of cross-reactivity. These allowed prediction of both the best vaccine match for any single virus and the breadth of coverage of new vaccine candidates from their capsid sequences as effectively as or better than serology. Sub-sequences chosen by the model-building process all contained sites that are known epitopes on other serotypes. Furthermore, for the SAT1 serotype, for which epitopes have never previously been identified, we provide strong evidence - by controlling for phylogenetic structure - for the presence of three epitopes across a panel of viruses and quantify the relative significance of some individual residues in determining cross-neutralization. Identifying and quantifying the importance of sites that predict viral strain cross-reactivity not just for single viruses but across entire serotypes can help in the design of vaccines with better targeting and broader coverage. These techniques can be generalized to any infectious agents where cross-reactivity assays have been carried out. As the parameterization uses pre-existing datasets, this approach quickly and cheaply increases both our understanding of antigenic relationships and our power to control disease
    corecore