9 research outputs found

    Faecal glucocorticoid metabolites as a measure of adrenocortical activity in polar bears (Ursus maritimus)

    Get PDF
    Analysis of faecal glucocorticoid metabolites (FGMs) is frequently applied to assess adrenocortical activity in animal conservation and welfare studies. Faecal sample collection is non-invasive and feasible under field conditions. FGM levels are also less prone to circadian rhythms, episodic fluctuations and short acute stressors than glucocorticoid (GC) levels obtained from other matrices, for example blood or saliva. To investigate the suitability of FGM measurement in polar bears (Ursus maritimus), a species listed as Vulnerable by the IUCN (International Union for Conservation of Nature), a cortisol enzyme immunoassay (EIA) was biologically validated by demonstrating a significant increase in FGMs after five zoo-to-zoo transports. In addition to validating the method, the study also documented an average delay of 7 h until the first occurrence of food colorants in the monitored polar bears, which provides essential information for future studies. After validation, the assay was applied to measure FGM concentrations of five polar bears over a 1-year period. Several pre-defined potentially stressful events were recorded in an event log to measure their effect on FGM concentrations. A mixed model analysis revealed significant increases in FGM concentrations after social tension and environmental changes, whereas season and sex had no significant effect. The study demonstrates that the applied cortisol EIA is suitable for measuring FGM levels in polar bears and that using a carefully validated assay for FGM analysis in combination with a detailed sampling protocol can serve as a valuable tool for evaluating mid- to long-term stress in polar bears. FGM levels can be used to monitor stress in captive polar bears in order to optimize housing conditions but also to elucidate stress responses in wild populations for targeted conservation measures

    Analysis of hair steroid hormones in polar bears (Ursus maritimus) via liquid chromatography–tandem mass spectrometry: comparison with two immunoassays and application for longitudinal monitoring in zoos

    Get PDF
    Analysis of hair cortisol concentrations (HCCs) is a promising method for monitoring long-term stress in mammals. However, previous measurements of HCCs in polar bears (Ursus maritimus) have yielded highly variable results, which are likely due to different methodological approaches. In this study, hair samples of zoo-housed polar bears were analyzed for cortisol with two independent immunoassays [an enzyme-linked immunoassay (EIA) and a chemiluminescence assay (CLIA)] and liquid chromatography–tandem mass spectrometry (LC–MS/MS). HCC measurements depended significantly on assay type applied, sample processing (cutting vs. powdering hair) and their interaction. Best agreement was observed between LC–MS/MS and CLIA (R2 = 0.81 for powdered hair) and sample processing had a minor, albeit significant, effect on obtained HCC measurements in these assays (R2 > 0.9). EIA measurements were consistently higher than with the other assays. HCC measurement was validated biologically for CLIA and LC–MS/MS in one male polar bear that experienced considerable stress for a prolonged period of time (> 18 weeks). Subsequently, by using the validated LC–MS/MS the measurement of cortisol could be complemented by the analysis of other steroids including cortisone, testosterone and progesterone levels from hair samples collected over a 9-month period (5–13 months) from six zoo-housed polar bears (five males, one female). No seasonal steroid variation was observed except in male progesterone levels. For all steroids except cortisone, a strong body region effect (neck or paw) was observed. Cortisol and cortisone, as well as progesterone and testosterone, concentrations were positively correlated. We show that hair steroid concentrations can be used to longitudinally measure stress and reproductive hormone axes in polar bears. The data established herein provide important basic information regarding methodology and study design for assessing hair steroid hormones

    Analysis of hair steroid hormones in polar bears (Ursus maritimus) via liquid chromatography–tandem mass spectrometry: comparison with two immunoassays and application for longitudinal monitoring in zoos

    No full text
    Analysis of hair cortisol concentrations (HCCs) is a promising method for monitoring long-term stress in mammals. However, previous measurements of HCCs in polar bears (Ursus maritimus) have yielded highly variable results, which are likely due to different methodological approaches. In this study, hair samples of zoo-housed polar bears were analyzed for cortisol with two independent immunoassays [an enzyme-linked immunoassay (EIA) and a chemiluminescence assay (CLIA)] and liquid chromatography–tandem mass spectrometry (LC–MS/MS). HCC measurements depended significantly on assay type applied, sample processing (cutting vs. powdering hair) and their interaction. Best agreement was observed between LC–MS/MS and CLIA (R2 = 0.81 for powdered hair) and sample processing had a minor, albeit significant, effect on obtained HCC measurements in these assays (R2 > 0.9). EIA measurements were consistently higher than with the other assays. HCC measurement was validated biologically for CLIA and LC–MS/MS in one male polar bear that experienced considerable stress for a prolonged period of time (> 18 weeks). Subsequently, by using the validated LC–MS/MS the measurement of cortisol could be complemented by the analysis of other steroids including cortisone, testosterone and progesterone levels from hair samples collected over a 9-month period (5–13 months) from six zoo-housed polar bears (five males, one female). No seasonal steroid variation was observed except in male progesterone levels. For all steroids except cortisone, a strong body region effect (neck or paw) was observed. Cortisol and cortisone, as well as progesterone and testosterone, concentrations were positively correlated. We show that hair steroid concentrations can be used to longitudinally measure stress and reproductive hormone axes in polar bears. The data established herein provide important basic information regarding methodology and study design for assessing hair steroid hormones

    On the integration of ecological and physiological variables in polar bear toxicology research: a systematic review

    No full text
    Ecotoxicology evolved as a scientific field as awareness of the unintended effects of anthropogenic pollutants in biota increased. Polar bears (Ursus maritimus) are often the focus of Arctic contaminant exposure studies because they are apex predators with high contaminant loads. While early studies focused on describing and quantifying pollutants, present-day polar bear toxicological papers often incorporate ecological variables. This systematic literature review investigates the ecological and physiological variables that have been integrated in such studies. The systematic literature search resulted in 207 papers, published between 1970 and 2016. Representation of each of the 19 polar bear subpopulations varied from 0 to 72 papers; East Greenland, Barents Sea, Southern Beaufort Sea, and Lancaster Sound had the most published research, with over 30 papers each. Samples were collected between 1881 and 2015, primarily from harvested bears (66%); most from the 1990s and 2000s. Adipose tissue, liver, and blood were the most common tissues examined, and mean number of bears analyzed per paper was 76 (range 1–691). Papers investigating temporal trends did so using a mean sample of 61 bears over a 6-year period.The frequency with which ecological and physiological variables were integrated into toxicological papers varied. Age and (or) sex was the only ecological variable(s) considered in 51% of papers. Further, a total of 37% of the papers included in the review investigated physiological effects in relation to contaminant concentrations. Of the papers, 98% dealt with contaminant exposure at the individual level, leaving population level effects largely unstudied. Solitary subadult and adult polar bears were included in 57% and 79% of the papers, respectively. Younger bears were included in fewer papers: yearlings in 20% and cubs-of-the-year in 13%. Only 12% of the papers examined reproduction relative to contaminants. Finally, body condition was included in 26% of the research papers, whereas variables related to polar bear diet were included in ≤9%. Based on our findings, we suggest future polar bear toxicology studies increase sample sizes, include more ecological variables, increase studies on family groups, and increase the applicability of studies to management and conservation by examining pollution effects on reproduction and survival

    State of knowledge on current exposure, fate and potential health effects of contaminants in polar bears from the circumpolar Arctic

    No full text
    The polar bear (Ursus maritimus) is among the Arctic species exposed to the highest concentrations of long-range transported bioaccumulative contaminants, such as halogenated organic compounds and mercury. Contaminant exposure is considered to be one of the largest threats to polar bears after the loss of their Arctic sea ice habitat due to climate change. The aim of this review is to provide a comprehensive summary of current exposure, fate, and potential health effects of contaminants in polar bears from the circumpolar Arctic required by the Circumpolar Action Plan for polar bear conservation. Overall results suggest that legacy persistent organic pollutants (POPs) including polychlorinated biphenyls, chlordanes and perfluorooctane sulfonic acid (PFOS), followed by other perfluoroalkyl compounds (e.g. carboxylic acids, PFCAs) and brominated flame retardants, are still the main compounds in polar bears. Concentrations of several legacy POPs that have been banned for decades in most parts of the world have generally declined in polar bears. Current spatial trends of contaminants vary widely between compounds and recent studies suggest increased concentrations of both POPs and PFCAs in certain subpopulations. Correlative field studies, supported by in vitro studies, suggest that contaminant exposure disrupts circulating levels of thyroid hormones and lipid metabolism, and alters neurochemistry in polar bears. Additionally, field and in vitro studies and risk a
    corecore