174 research outputs found

    Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize the brain

    Get PDF
    The central nervous system (CNS) is traditionally viewed as an immune privileged site in which overzealous immune cells are prevented from doing irreparable damage. It was believed that immune responses occurring within the CNS could potentially do more damage than the initial pathogenic insult itself. However, virtually every aspect of CNS tissue damage, including degeneration, tumors, infection, and of course autoimmunity, involves a significant cellular inflammatory component. While the blood-brain barrier (BBB) inhibits diffusion of hydrophilic (immune) molecules across brain capillaries, activated lymphocytes readily pass the endothelial layer of postcapillary venules without difficulty. In classic neuro-immune diseases such as multiple sclerosis or acute disseminated encephalomyelitis, it is thought that neuroantigen-reactive lymphocytes, which have escaped immune tolerance, now invade the CNS and are responsible for tissue damage, demyelination, and axonal degeneration. The developed animal model for these disorders, experimental autoimmune encephalomyelitis (EAE), reflects many aspects of the human conditions. Studies in EAE proved that auto-reactive encephalitogenic T helper (Th) cells are responsible for the onset of the disease. Th cells recognize their cognate antigen (Ag) only when presented by professional Ag-presenting cells in the context of major histocompatibility complex class II molecules. The apparent target structures of EAE immunity are myelinating oligodendrocytes, which are not capable of presenting Ag to invading encephalitogenic T cells. A compulsory third party is thus required to mediate between the attacking T cells and the myelin-expressing target. This review will discuss the recent advances in this field of research and we will discuss the journey of an auto-reactive T cell from its site of activation into perivascular spaces and further into the target tissu

    Beyond Activation: Characterizing Microglial Functional Phenotypes

    Get PDF
    Classically, the following three morphological states of microglia have been defined: ramified, amoeboid and phagocytic. While ramified cells were long regarded as “resting”, amoeboid and phagocytic microglia were viewed as “activated”. In aged human brains, a fourth, morphologically novel state has been described, i.e., dystrophic microglia, which are thought to be senescent cells. Since microglia are not replenished by blood-borne mononuclear cells under physiological circumstances, they seem to have an “expiration date” limiting their capacity to phagocytose and support neurons. Identifying factors that drive microglial aging may thus be helpful to delay the onset of neurodegenerative diseases, such as Alzheimer’s disease (AD). Recent progress in single-cell deep sequencing methods allowed for more refined differentiation and revealed regional-, age- and sex-dependent differences of the microglial population, and a growing number of studies demonstrate various expression profiles defining microglial subpopulations. Given the heterogeneity of pathologic states in the central nervous system, the need for accurately describing microglial morphology and expression patterns becomes increasingly important. Here, we review commonly used microglial markers and their fluctuations in expression in health and disease, with a focus on IBA1 low/negative microglia, which can be found in individuals with liver disease

    The Role of Microglia and Matrix Metalloproteinases Involvement in Neuroinflammation and Gliomas

    Get PDF
    Matrix metalloproteinases (MMPs) are involved in the pathogenesis of neuroinflammatory diseases (such as multiple sclerosis) as well as in the expansion of malignant gliomas because they facilitate penetration of anatomical barriers (such as the glia limitans) and migration within the neuropil. This review elucidates pathomechanisms and summarizes the current knowledge of the involvement of MMPs in neuroinflammation and glioma, invasion highlighting microglia as major sources of MMPs. The induction of expression, suppression, and multiple pathways of function of MMPs in these scenarios will also be discussed. Understanding the induction and action of MMPs might provide valuable information and reveal attractive targets for future therapeutic strategies

    The perfect crime? : CCSVI not leaving a trace in MS

    Get PDF
    Background: Multiple sclerosis (MS) is a chronic, inflammatory demyelinating disease of the central nervous system, believed to be triggered by an autoimmune reaction to myelin. Recently, a fundamentally different pathomechanism termed ‘chronic cerebrospinal venous insufficiency’ (CCSVI) was proposed, provoking significant attention in the media and scientific community. Methods: Twenty MS patients (mean age 42.2±13.3 years; median Extended Disability Status Scale 3.0, range 0–6.5) were compared with 20 healthy controls. Extra- and intracranial venous flow direction was assessed by colour-coded duplex sonography, and extracranial venous cross-sectional area (VCSA) of the internal jugular and vertebral veins (IJV/VV) was measured in B-mode to assess the five previously proposed CCSVI criteria. IJV-VCSA≤0.3 cm2 indicated ‘stenosis,’ and IJV-VCSA decrease from supine to upright position ‘reverted postural control.’ The sonographer, data analyser and statistician were blinded to the patient/control status of the participants. Results: No participant showed retrograde flow of cervical or intracranial veins. IJV-VCSA≤0.3 cm2 was found in 13 MS patients versus 16 controls (p=0.48). A decrease in IJV-VCSA from supine to upright position was observed in all participants, but this denotes a physiological finding. No MS patient and one control had undetectable IJV flow despite deep inspiration (p=0.49). Only one healthy control and no MS patients fulfilled at least two criteria for CCSVI. Conclusions: This triple-blinded extra- and transcranial duplex sonographic assessment of cervical and cerebral veins does not provide supportive evidence for the presence of CCSVI in MS patients. The findings cast serious doubt on the concept of CCSVI in MS

    Vital Functions Contribute to the Spread of Extracellular Fluids in the Brain: Comparison Between Life and Death

    Get PDF
    Vascular pulsations, contractions of vascular smooth muscle cells and breathing have been reported to foster movement and clearance of interstitial and cerebrospinal fluids from the brain. The aim of this study was to estimate the contribution of these vital functions. We compared the spread of an injected hydrophilic tracer (Fluoro-Emerald, a 10 kDa fluorescein-coupled dextran amine) in the brains of live anesthetized and sacrificed rats at 30 and 90 min after injection. To determine the overall pattern of distribution of tracers, we created 3D-reconstructions of the horizontal transections of the whole brain. Immunofluorescence staining with laminin and collagen IV was performed to determine the pattern of distribution of tracer in relation to the cerebrovascular basement membranes. We found that diffusion was widely restricted to the periventricular region in sacrificed rats with no spread to the contralateral hemisphere, while the bulk flow occurred along the vasculature and reached the surface and the contralateral hemisphere as soon as 30 min after injection in live anesthetized animals. The tracer appeared to be localized along the vascular basement membranes and along fiber tracts as reported previously. Thus, our data indicate that vital functions are essential for the remote movement of extracellular fluids within the cerebral parenchyma

    Microglial pathology

    Get PDF

    Undisturbed climbing fiber pruning in the cerebellar cortex of CX3CR1-deficient mice

    Get PDF
    Pruning, the elimination of excess synapses is a phenomenon of fundamental importance for correct wiring of the central nervous system. The establishment of the cerebellar climbing fiber (CF)-to-Purkinje cell (PC) synapse provides a suitable model to study pruning and pruning-relevant processes during early postnatal development. Until now, the role of microglia in pruning remains under intense investigation. Here, we analyzed migration of microglia into the cerebellar cortex during early postnatal development and their possible contribution to the elimination of CF-to-PC synapses. Microglia enrich in the PC layer at pruning-relevant time points giving rise to the possibility that microglia are actively involved in synaptic pruning. We investigated the contribution of microglial fractalkine (CX3CR1) signaling during postnatal development using genetic ablation of the CX3CR1 receptor and an in-depth histological analysis of the cerebellar cortex. We found an aberrant migration of microglia into the granule and the molecular layer. By electrophysiological analysis, we show that defective fractalkine signaling and the associated migration deficits neither affect the pruning of excess CFs nor the development of functional parallel fiber and inhibitory synapses with PCs. These findings indicate that CX3CR1 signaling is not mandatory for correct cerebellar circuit formation. Main Points - Ablation of CX3CR1 results in a transient migration defect in cerebellar microglia. - CX3CR1 is not required for functional pruning of cerebellar climbing fibers. - Functional inhibitory and parallel fiber synapse development with Purkinje cells is undisturbed in CX3CR1-deficient mice

    Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease

    Get PDF
    The role of microglial cells in the pathogenesis of Alzheimer’s disease (AD) neurodegeneration is unknown. Although several works suggest that chronic neuroinflammation caused by activated microglia contributes to neurofibrillary degeneration, anti-inflammatory drugs do not prevent or reverse neuronal tau pathology. This raises the question if indeed microglial activation occurs in the human brain at sites of neurofibrillary degeneration. In view of the recent work demonstrating presence of dystrophic (senescent) microglia in aged human brain, the purpose of this study was to investigate microglial cells in situ and at high resolution in the immediate vicinity of tau-positive structures in order to determine conclusively whether degenerating neuronal structures are associated with activated or with dystrophic microglia. We used a newly optimized immunohistochemical method for visualizing microglial cells in human archival brain together with Braak staging of neurofibrillary pathology to ascertain the morphology of microglia in the vicinity of tau-positive structures. We now report histopathological findings from 19 humans covering the spectrum from none to severe AD pathology, including patients with Down’s syndrome, showing that degenerating neuronal structures positive for tau (neuropil threads, neurofibrillary tangles, neuritic plaques) are invariably colocalized with severely dystrophic (fragmented) rather than with activated microglial cells. Using Braak staging of Alzheimer neuropathology we demonstrate that microglial dystrophy precedes the spread of tau pathology. Deposits of amyloid-beta protein (Aβ) devoid of tau-positive structures were found to be colocalized with non-activated, ramified microglia, suggesting that Aβ does not trigger microglial activation. Our findings also indicate that when microglial activation does occur in the absence of an identifiable acute central nervous system insult, it is likely to be the result of systemic infectious disease. The findings reported here strongly argue against the hypothesis that neuroinflammatory changes contribute to AD dementia. Instead, they offer an alternative hypothesis of AD pathogenesis that takes into consideration: (1) the notion that microglia are neuron-supporting cells and neuroprotective; (2) the fact that development of non-familial, sporadic AD is inextricably linked to aging. They support the idea that progressive, aging-related microglial degeneration and loss of microglial neuroprotection rather than induction of microglial activation contributes to the onset of sporadic Alzheimer’s disease. The results have far-reaching implications in terms of reevaluating current treatment approaches towards AD

    Intrinsic up-regulation of 2-AG favors an area specific neuronal survival in different in vitro models of neuronal damage

    Get PDF
    BACKGROUND: The endocannabinoid 2-arachidonoyl glycerol (2-AG) acts as a retrograde messenger and modulates synaptic signaling e. g. in the hippocampus. 2-AG also exerts neuroprotective effects under pathological situations. To better understand the mechanism beyond physiological signaling we used Organotypic Entorhino-Hippocampal Slice Cultures (OHSC) and investigated the temporal regulation of 2-AG in different cell subsets during excitotoxic lesion and dendritic lesion of long range projections in the enthorhinal cortex (EC), dentate gyrus (DG) and the cornu ammonis region 1 (CA1). RESULTS: 2-AG levels were elevated 24 h after excitotoxic lesion in CA1 and DG (but not EC) and 24 h after perforant pathway transection (PPT) in the DG only. After PPT diacylglycerol lipase alpha (DAGL) protein, the synthesizing enzyme of 2-AG was decreased when Dagl mRNA expression and 2-AG levels were enhanced. In contrast to DAGL, the 2-AG hydrolyzing enzyme monoacylglycerol lipase (MAGL) showed no alterations in total protein and mRNA expression after PPT in OHSC. MAGL immunoreaction underwent a redistribution after PPT and excitotoxic lesion since MAGL IR disappeared in astrocytes of lesioned OHSC. DAGL and MAGL immunoreactions were not detectable in microglia at all investigated time points. Thus, induction of the neuroprotective endocannabinoid 2-AG might be generally accomplished by down-regulation of MAGL in astrocytes after neuronal lesions. CONCLUSION: Increase in 2-AG levels during secondary neuronal damage reflects a general neuroprotective mechanism since it occurred independently in both different lesion models. This intrinsic up-regulation of 2-AG is synergistically controlled by DAGL and MAGL in neurons and astrocytes and thus represents a protective system for neurons that is involved in dendritic reorganisation

    Targeting product quality: Where systems biotechnology and process design meet

    Get PDF
    Product quality is a result of the entire production process including protein sequence, host cell, media and process parameters. Many of the desired product properties are defined by posttranslational modifications with impact on biological activity, immunogenicity, half-life or stability. In‑depth understanding of the host cells capabilities as well as of the process interactions enables the targeted modulation of product quality attributes by rational selection of host cells and design of bioprocesses. This is valuable for new biological molecules in order to improve efficacy, reduce side effects, access new patient populations. For biosimilars this allows developing into defined quality attribute profiles. The identification of suitable host cells, process parameters and media compositions to modulate quality attributes is challenging due to the complexity of the cell and the bio-processes. Here, we want to present two aspects of how we approach this challenge: First, by a global RNAseq-driven analysis that reveals distinct differential expression patterns of genes contributing to recombinant antibody glycosylation (Könitzer & Müller et al., 2015) and second by comprehensive data analysis, in-depth characterization and high-throughput screening of process parameters and media compounds impacting glycosylation. To characterize different host cells a global analysis was performed on glyco-pattern and gene expression level. Six different monoclonal antibody projects with over 550 analyses were reviewed concerning their glyco-pattern distribution based on ESI-MS and HPLC data. Additionally, nearly 200 RNAseq gene expression data were used for a pathway-oriented analysis of the glycosylation-associated transcripts. Gene expression levels were compared between the three potential host cell lines as well as for host versus producing cell line. We identified with our new NGS pipeline 278 transcripts in our database. Expression patterns were host cell specific and depended on whether a mAb was expressed or not. For example, the expression of Sialyltransferase 10 (St3gal6) and B4galt6 (β 1,4-galactosyltransferase 6) could only be observed in the CHO-K1 host cell line while Cmah was only detectable in CHO-DG44 cells. Interestingly, St6gal1 was switched-on in mAb producing CHO-DG44 cells but at a very low level. this explains why normally only relatively low sialylation is observed with products produced in this cell line, and, since both the Sialyltransferase 10 and the CMP-Neu5Ac Hydroxylase activities are needed for constitution of with Neu5Gc sialic acid glycosylated antibodies, by lacking of the St3gal6 (CHO-DG44 cells) or the Cmah gene (CHO-K1 cells) mainly the non-immunogenic Neu5Ac sialic acids are predominant in CHO cells. Such data improve future production clone selection and process development strategies for better steering but may also support selection of critical quality attributes. The impact of cell culture conditions and media compounds on the glycosylation pattern was assessed by an integrated screening approach. Initially a database was created including process and analytical data from twelve projects. Data sets of more than 2500 fed-batch processes with 6300 analytical data sets enabled a cross-project analysis and correlation of process parameters with product quality attributes. Additionally, multi parallel small scale bioreactors, robotics based product capture and high throughput analytics were combined to minimize hands-on-time to gain data for correlation analysis. Said setups supported the identification of numerous media supplements and upstream process conditions that were applied for rational modulation of glycosylation patterns. Moreover, case studies focusing on the optimization of glycan patterns and antibody dependent cellular cytotoxicity by using metal ions as media supplements will be shown. Knowledge-driven selection of a host cell already gives direction to the product quality space to be expected with a certain molecule in clone selection. After gap analysis, process parameters can be chosen for application in process development to finally achieve the set quality target product profile
    corecore