5 research outputs found

    Overview of AO calibration strategies in the ELT context

    Get PDF
    The scientific potential of the ELT will rely on the performance of its AO systems that will require to be perfectly calibrated before and during the operations. The actual design of the ELT will provide a constraining environment for the calibration and new strategies have to be developed to overcome these constraints. This will be particularly true concerning the Interaction Matrix of the system with no calibration source upward M4 and moving elements in the telescope. After a brief presentation of the ELT specificities for the calibration, this communication focuses on the different strategies that have already been developed to get/measure the Interaction Matrix of the system, either based on synthetic models or using on-sky measurements. First tests of these methods have been done using numerical simulations for a simple AO system and a proposition for a calibration strategy of the ELT will be presented

    Using the C-n(2) and wind profiler method with wide-field laser-guide-stars adaptive optics to quantify the frozen-flow decay

    No full text
    International audienceWe use the spatio-temporal cross-correlations of slopes from five Shack-Hartmann wavefront sensors to analyse the temporal evolution of the atmospheric turbulence layers at different altitudes. The focus is on the verification of the frozen-flow assumption. The data come from the Gemini South Multiconjugate Adaptive Optics System (GeMS). First, we present the C-n(2) and wind profiling technique. This method provides useful information for the operation of the adaptive optics system, such as the number of existing turbulence layers, their associated velocities, altitudes and strengths, and also a mechanism to estimate the dome-seeing contribution to the total turbulence. Next, by identifying the turbulence layers, we show that it is possible to estimate the rate of decay in time of the correlation among turbulence measurements. We reduce on-sky data obtained during the 2011, 2012 and 2013 campaigns. The first results suggest that the rate of temporal decorrelation can be expressed in terms of a single parameter that is independent of the layer altitude and turbulence strength. Finally, we show that the decay rate of the frozen-flow contribution increases linearly with the layer speed. The observed evolution of the decay rate confirms the potential interest of the predictive control for wide-field adaptive optics systems

    Beam shaping for laser-based adaptive optics in astronomy

    No full text
    International audienceThe availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics system (GeMS). A beam shaping concept with two deformable mirrors is investigated in order to provide automated optimization of the laser quality for astronomical AO. This study aims at demonstrating the correction of quasi-static aberrations of the laser, in both amplitude and phase, testing a prototype of this two-deformable mirror concept on GeMS. The paper presents the results of the preparatory study before the experimental phase. An algorithm to control amplitude and phase correction, based on phase retrieval techniques, is presented with a novel unwrapping method. Its performance is assessed via numerical simulations, using aberrations measured at GeMS as reference. The results predict effective amplitude and phase correction of the laser distortions with about 120 actuators per mirror and a separation of 1.4 m between the mirrors. The spot size is estimated to be reduced by up to 15% thanks to the correction. In terms of AO noise level, this has the same benefit as increasing the photon flux by 40%

    Upgrading the high contrast imaging facility SPHERE: science drivers and instrument choices

    No full text
    International audienceSPHERE+ is a proposed upgrade of the SPHERE instrument at the VLT, which is intended to boost the current performances of detection and characterization for exoplanets and disks. SPHERE+ will also serve as a demonstrator for the future planet finder (PCS) of the European ELT. The main science drivers for SPHERE+ are 1/ to access the bulk of the young giant planet population down to the snow line (3 − 10 au), to bridge the gap with complementary techniques (radial
    corecore