72 research outputs found
Recommended from our members
Analyses of residual thermal stresses in ceramic matrix composites
Residual thermal stresses in ceramic matrix composites containing either ellipsoidal inclusions or short fibers (i.e., fibers of finite length) are considered. First, the residual stresses in ellipsoidal inclusions are uniform, and they are analyzed using a modified Eshelby model. Although closed-form analytical solutions are obtained, their formulations are formidable. When the aspect ratio of the ellipsoid is 0, 1, or infinity, simple analytical solutions can be obtained using different models, and they are in excellent agreement with those obtained from the modified Eshelby model. Second, residual stresses in short fibers are nonuniform, and they are analyzed using a modified shear lag model, in which imaginary fibers are introduced to satisfy the continuity condition at the fiber ends. The analytical solutions are compared to the experimental results
Recommended from our members
Interfacial debonding versus fiber fracture in fiber-reinforced ceramic composites
Toughening of fiber-reinforced ceramic composites by fiber pullout relies on debonding at the fiber/matrix interface prior to fiber fracture when composites are subjected to tensile loading. The criterion of interfacial debonding versus crack penetration has been analyzed for two semi-infinite elastic plates bonded at their interface. When a crack reaches the interface, the crack either deflects along the interface or penetrates into the next layer depending upon the ratio of the energy release rate for debonding versus that for crack penetration. This criterion has been used extensively to predict interfacial debonding versus fiber fracture for a crack propagating in a fiber-reinforced ceramic composite. Two modifications were considered in the present study to address the debonding/fracture problem. First, the authors derived the analysis for a strip of fiber, which had a finite width and was sandwiched between two semi-infinite plates of matrix. It was found that the criterion of interfacial debonding versus fiber fracture depended on the fiber width. Second, a bridging fiber behind the crack tip was considered where the crack tip initially circumvented the fiber. Subsequent to this, either the interface debonded or the fiber fractured. In this case, the authors have considered a bridging-fiber geometry to establish a new criterion
Recommended from our members
Processing and properties of FeAl-bonded composites
Iron aluminides are thermodynamically compatible with a wide range of ceramics such as carbides, borides, oxides, and nitrides, which makes them suitable as the matrix in composites or cermets containing fine ceramic particulates. For ceramic contents varying from 30 to 60 vol.%, composites of Fe-40 at. % Al with WC, TiC, TiB{sub 2}, and ZrB{sub 2} were fabricated by conventional liquid phase sintering of powder mixtures. For ceramic contents from 70 to 85 vol.%, pressureless melt infiltration was found to be a more suitable processing technique. In FeAl-60 vol.% WC, flexure strengths of up to 1.8 GPa were obtained, even though processing defects consisting of small oxide clusters were present. Room temperature fracture toughnesses were determined by flexure testing of chevron-notched specimens. FeAl/WC and FeAl/TiC composites containing 60 vol.% carbide particles exhibited K{sub Q} values around 20 MPa m{sup 1/2}. Slow crack growth measurements carried out in water and in dry oxygen suggest a relatively small influence of water-vapor embrittlement. It appears therefore that the mechanical properties of iron aluminides in the form of fine ligaments are quite different from their bulk properties. Measurements of the oxidation resistance, dry wear resistance, and thermal expansion of iron aluminide composites suggest many potential applications for these new materials
Nonlinear Realization of Chiral Symmetry on the Lattice
We formulate lattice theories in which chiral symmetry is realized
nonlinearly on the fermion fields. In this framework the fermion mass term does
not break chiral symmetry. This property allows us to use the Wilson term to
remove the doubler fermions while maintaining exact chiral symmetry on the
lattice. Our lattice formulation enables us to address non-perturbative
questions in effective field theories of baryons interacting with pions and in
models involving constituent quarks interacting with pions and gluons. We show
that a system containing a non-zero density of static baryons interacting with
pions can be studied on the lattice without encountering complex action
problems. In our formulation one can also decide non-perturbatively if the
chiral quark model of Georgi and Manohar provides an appropriate low-energy
description of QCD. If so, one could understand why the non-relativistic quark
model works.Comment: 34 pages, 2 figures, revised version to be published in J. High
Energy Phys. (changes in the 1st paragraph, additional descriptions on the
nature of the coordinate singularities in Sec.2, references added
Neutrinoless double-beta decay and effective field theory
We analyze neutrinoless double -decay (\nbb-decay) mediated by heavy
particles from the standpoint of effective field theory. We show how symmetries
of the \nbb-decay quark operators arising in a given particle physics model
determine the form of the corresponding effective, hadronic operators. We
classify the latter according to their symmetry transformation properties as
well as the order at which they appear in a derivative expansion. We apply this
framework to several particle physics models, including R-parity violating
supersymmetry (RPV SUSY) and the left-right symmetric model (LRSM) with mixing
and a right-handed Majorana neutrino. We show that, in general, the pion
exchange contributions to \nbb-decay dominate over the short-range
four-nucleon operators. This confirms previously published RPV SUSY results and
allows us to derive new constraints on the masses in the LRSM. In particular,
we show how a non-zero mixing angle in the left-right symmetry model
produces a new potentially dominant contribution to \nbb-decay that
substantially modifies previous limits on the masses of the right-handed
neutrino and boson stemming from constraints from \nbb-decay and vacuum
stability requirements.Comment: 37 pages. Accepted for publication in PR
Recommended from our members
Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants
Seeks to economically eliminate the environmental concerns associated with the use of fossil fuels
Constraints on the cosmic expansion history from GWTC–3
We use 47 gravitational wave sources from the Third LIGO–Virgo–Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC–3) to estimate the Hubble parameter H(z), including its current value, the Hubble constant H0. Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z). The source mass distribution displays a peak around 34 M⊙, followed by a drop-off. Assuming this mass scale does not evolve with the redshift results in a H(z) measurement, yielding (68% credible interval) when combined with the H0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0 estimate from GWTC–1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of with the galaxy catalog method, an improvement of 42% with respect to our GWTC–1 result and 20% with respect to recent H0 studies using GWTC–2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0) is the well-localized event GW190814
Recommended from our members
Reinforced ceramics employing discontinuous phases
The fracture toughness of ceramics can be improved by the incorporation of a variety of discontinuous reinforcing phases and microstructures. Observations of crack paths in these systems indicate that these reinforcing phases bridge the crack tip wake region. Recent developments in micromechanics toughening models applicable to such systems are discussed and compared with experimental observations. Because material parameters and microstructural characteristics are considered, the crack bridging models provide a means to optimize the toughening effects. 18 refs., 2 figs
Surface-Roughness Induced Residual Stresses in Thermal Barrier Coatings: Computer Simulations
Adherence of plasma-sprayed thermal barrier coatings (TBC'S} is strongly dependent on mechanical interlocking at the interface between the ceramic coating and the underlying metallic bond coat. Typically, a rough bond-coat surface topology is required to achieve adequate mechanical bonding. However, the resultant interfacial asperities modify the residual stresses that develop in the coating system due to thermal expansion differences, and other misfit strains, and generate stresses that can induce progressive fracture and eventual spallation of the ceramic coating. For a flat interface the principal residual stress is parallel to the interface as the stress normal to the interface is zero. However, the residual stress normal to the interface becomes non-zero, when the interface has the required interlocking morphology. In the present study, an actual microstructure of a plasma-sprayed TBC system was numerically simulated and analyzed with a recently developed, object-oriented finite element analysis program, OOF, to give an estimate of the localized residual stresses in a TBC system. Additionally, model TBC rnicrostructures were examined to evaluate the manner in which the topology of interfacial asperities influences residual stresses. Results are present for several scenarios of modifying interfacial roughness
Recommended from our members
Strong, Tough Ceramics Containing Microscopic Reinforcements: Tailoring In-Situ Reinforced Silicon Nitride Ceramics
Ceramics with their hardness, chemical stability, and refractoriness could be used to design more efficient energy generation and conversion systems as well as numerous other applications. However, we have needed to develop a fundamental understanding of how to tailor ceramics to improve their performance, especially to overcome their brittle nature. One of the advances in this respect was the incorporation of very strong microscopic rod-like reinforcements in the form of whiskers that serve to hold the ceramic together making it tougher and resistant to fracture. This microscopic reinforcement approach has a number of features that are similar to continuous fiber-reinforced ceramics; however, some of the details are modified. For instance, the strengths of the microscopic reinforcements must be higher as they typically have much stronger interfaces. For instance, single crystal silicon carbide whiskers can have tensile strengths in excess of {ge}7 GPa or >2 times that of continuous fibers. Furthermore, reinforcement pullout is limited to lengths of a few microns in the case of microscopic reinforcement due as much to the higher interfacial shear resistance as to the limit of the reinforcement lengths. On the other hand, the microscopic reinforcement approach can be generated in-situ during the processing of ceramics. A remarkable example of this is found in silicon nitride ceramics where elongated rod-like shape grains can be formed when the ceramic is fired at elevated temperatures to form a dense component
- …