6,902 research outputs found
Recommended from our members
The reaction between silylene and ammonia: some gas-phase kinetic and quantum chemical studies
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by 193 nm laser flash photolysis of silacyclopent-3-ene, have been carried out in the presence of ammonia, NH3. Second order kinetics were observed. The reaction was studied in the gas phase at 10 Torr total pressure in SF6 bath gas at each of the three temperatures, 299, 340 and 400 K. The second order rate constants (laser pulse energy of 60 mJ/pulse) fitted the Arrhenius equation:
log(k/cm3 molecule-1 s-1) = (-10.37 ± 0.17) + (0.36 ± 1.12 kJ mol-1)/RTln10
Experiments at other pressures showed that these rate constants were unaffected by pressure in the range 10-100 Torr, but showed small decreases in value at 3 and 1 Torr. There was also a weak intensity dependence, with rate constants decreasing at laser pulse energies of 30 mJ/pulse. Ab initio calculations at the G3 level of theory, show that SiH2 + NH3 should form an initial adduct (donor-acceptor complex), but that energy barriers are too great for further reaction of the adduct. This implies that SiH2 + NH3 should be a pressure dependent association reaction. The experimental data are inconsistent with this and we conclude that SiH2 decays are better explained by reaction of SiH2 with the amino radical, NH2, formed by photodissociation of NH3 at 193 nm. The mechanism of this previously unstudied reaction is discussed
Generation of optimal trajectories for Earth hybrid pole sitters
A pole-sitter orbit is a closed path that is constantly above one of the Earth's poles, by means of continuous low thrust. This work proposes to hybridize solar sail propulsion and solar electric propulsion (SEP) on the same spacecraft, to enable such a pole-sitter orbit. Locally-optimal control laws are found with a semi-analytical inverse method, starting from a trajectory that satisfies the pole-sitter condition in the Sun-Earth circular restricted three-body problem. These solutions are subsequently used as first guess to find optimal orbits, using a direct method based on pseudospectral transcription. The orbital dynamics of both the pure SEP case and the hybrid case are investigated and compared. It is found that the hybrid spacecraft allows savings on propellant mass fraction. Finally, it is shown that for sufficiently long missions, a hybrid pole-sitter, based on mid-term technology, enables a consistent reduction in the launch mass for a given payload, with respect to a pure SEP spacecraft
The autonomous computer micro world The danger of the virtual context in the real conformation of architecture
The computational development of the projects has generated deep changes in the foundations, the conceptions, the development forms and representation. The achievements in the speed, the facilitation of the development processes, the accuracy of the mapping, the perfection of the image and the introduction of the virtual space to simulate the reality, they are contrasted with the widespread tendency to the conception of unique object without subject, the atomization of the reflection, the repetition, the indifference of the reality, of the place and of the environmental environment, the given socialization and historical disaffection. An exit is intended with the conception of the incarnated and socially inhabited spaceEl desarrollo computacional de los proyectos ha generado profundos cambios en los fundamentos, las concepciones, las formas de desarrollo y representaciĂłn. Los logros en la velocidad, la facilitaciĂłn de los procesos de desarrollo, la exactitud de la planimetrĂa, la perfecciĂłn de la imagen y la introducciĂłn del espacio virtual para simular la realidad, se contrastan con la tendencia generalizada a la concepciĂłn de objeto Ăşnico sin sujeto, la atomizaciĂłn de la reflexiĂłn, la repeticiĂłn, el desapego de la realidad, del lugar y del entorno ambiental, la des-socializaciĂłn y desafecciĂłn histĂłrica. Se propone una salida con la concepciĂłn del espacio encarnado y socialmente habitad
Recommended from our members
Time-resolved gas-phase kinetic and quantum chemical studies of the reaction of silylene with oxygen
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with O-2. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at five temperatures in the range 297-600 K. The second order rate constants at 10 Torr were fitted to the Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-11.08 +/- 0.04) + (1.57 +/- 0.32 kJ mol(-1))/RT ln10 The decrease in rate constant values with increasing temperature, although systematic is very small. The rate constants showed slight increases in value with pressure at each temperature, but this was scarcely beyond experimental uncertainty. From estimates of Lennard-Jones collision rates, this reaction is occurring at ca. 1 in 20 collisions, almost independent of pressure and temperature. Ab initio calculations at the G3 level backed further by multi-configurational (MC) SCF calculations, augmented by second order perturbation theory (MRMP2), support a mechanism in which the initial adduct, H2SiOO, formed in the triplet state (T), undergoes intersystem crossing to the more stable singlet state (S) prior to further low energy isomerisation processes leading, via a sequence of steps, ultimately to dissociation products of which the lowest energy pair are H2O + SiO. The decomposition of the intermediate cyclo-siladioxirane, via O-O bond fission, plays an important role in the overall process. The bottleneck for the overall process appears to be the T -> S process in H2SiOO. This process has a small spin orbit coupling matrix element, consistent with an estimate of its rate constant of 1 x 10(9) s(-1) obtained with the aid of RRKM theory. This interpretation preserves the idea that, as in its reactions in general, SiH2 initially reacts at the encounter rate with O-2. The low values for the secondary reaction barriers on the potential energy surface account for the lack of an observed pressure dependence. Some comparisons are drawn with the reactions of CH2 + O-2 and SiCl2 + O-2
Displaced geostationary orbit design using hybrid sail propulsion
Because of an increase in the number of geostationary spacecraft and the limits imposed by east–west spacing
requirements, the geostationary orbit is becoming congested. To increase its capacity, this paper proposes to create
new geostationary slots by displacing the geostationary orbit either out of or in the equatorial plane by means of
hybrid solar sail and solar electric propulsion. To minimize propellant consumption, optimal steering laws for the
solar sail and solar-electric-propulsion thrust vectors are derived and the performance in terms of mission lifetime is
assessed. For comparison, similar analyses are performed for conventional propulsion, including impulsive and pure
solar electric propulsion. It is shown that hybrid sails outperform these propulsion techniques and that out-of-plane
displacements outperform in-plane displacements. The out-of-plane case is therefore further investigated in a
spacecraft mass budget to determine the payload mass capacity. Finally, two transfers that enable a further
improvement of the performance of hybrid sails for the out-of-plane case are optimized using a direct pseudospectral
method: a seasonal transit between orbits displaced above and below the equatorial plane and a transit to a parking
orbit when geostationary coverage is not needed. Both transfers are shown to require only a modest propellant
budget, outweighing the improvements they can establish
Recommended from our members
A dramatic isotope effect in the reaction of ClSiH with trimethylsilane-1-d: experimental evidence for intermediate complexes in silylene Si-H(D) insertion reactions
A kinetic isotope effect (kD/kH) of 7.4 has been found for the reaction of chlorosilylene with trimethysilane (Me3SiD vs Me3SiH). Such a value can be accounted for by theoretical modelling, but only if an internal rearrangement of the initially form complex is included in the mechanism. This provides the first concrete evidence for such complexes
Green supply chain quantitative models for sustainable inventory management: A review
[EN] This paper provides a systematic and up-to-date review and classification of 91 studies on quantitative methods of green supply chains for sustainable inventory management. It particularly identifies the main study areas, findings and quantitative models by setting a point for future research opportunities in sustainable inventory management. It seeks to review the quantitative methods that can better contribute to deal with the environmental impact challenge. More specifically, it focuses on different supply chain designs (green supply chain, sustainable supply chain, reverse logistics, closed-loop supply chain) in a broader application context. It also identifies the most important variables and parameters in inventory modelling from a sustainable perspective. The paper also includes a comparative analysis of the different mathematical programming, simulation and statistical models, and their solution approach, with exact methods, simulation, heuristic or meta-heuristic solution algorithms, the last of which indicate the increasing attention paid by researchers in recent years. The main findings recognise mixed integer linear programming models supported by heuristic and metaheuristic algorithms as the most widely used modelling approach. Minimisation of costs and greenhouse gas emissions are the main objectives of the reviewed approaches, while social aspects are hardly addressed. The main contemplated inventory management parameters are holding costs, quantity to order, safety stock and backorders. Demand is the most frequently shared information. Finally, tactical decisions, as opposed to strategical and operational decisions, are the main ones.The research leading to these results received funding from the Grant RTI2018-101344-B-I00 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe". It was also funded by the National Agency for Research and Development (ANID) / Scholarship Program/Doctorado Becas en el Extranjero/2020 72210174.Becerra, P.; Mula, J.; Sanchis, R. (2021). Green supply chain quantitative models for sustainable inventory management: A review. Journal of Cleaner Production. 328:1-16. https://doi.org/10.1016/j.jclepro.2021.129544S11632
- …