106 research outputs found

    A transformative route to nanoporous manganese oxides of controlled oxidation states with identical textural properties

    Get PDF
    Nanoporous nanocrystalline metal oxides with tunable oxidation states are crucial for controlling their catalytic, electronic, and optical properties. However, previous approaches to modulate oxidation states in nanoporous metal oxides commonly lead to the breakdown of the nanoporous structure as well as involve concomitant changes in their morphology, pore size, surface area, and nanocrystalline size. Herein, we present a transformative route to nanoporous metal oxides with various oxidation states using manganese oxides as model systems. Thermal conversion of Mn-based metal-organic frameworks (Mn-MOFs) at controlled temperature and atmosphere yielded a series of nanoporous manganese oxides with continuously tuned oxidation states: MnO, Mn3O 4, Mn5O8, and Mn2O3. This transformation enabled the preparation of low-oxidation phase MnO and metastable intermediate phase Mn5O8 with nanoporous architectures, which were previously rarely accessible. Significantly, nanoporous MnO, Mn3O4, and Mn5O8 had a very similar morphology, surface area, and crystalline size. We investigated the electrocatalytic activity of nanoporous manganese oxides for oxygen reduction reaction (ORR) to identify the role of oxidation states, and observed oxidation state-dependent activity and kinetics for the ORR.close5

    Size-Dependent Dissociation of Carbon Monoxide on Cobalt Nanoparticles

    Get PDF
    [[abstract]]In situ soft X-ray absorption spectroscopy (XAS) was employed to study the adsorption and dissociation of carbon monoxide molecules on cobalt nanoparticles with sizes ranging from 4 to 15 nm. The majority of CO molecules adsorb molecularly on the surface of the nanoparticles, but some undergo dissociative adsorption, leading to oxide species on the surface of the nanoparticles. We found that the tendency of CO to undergo dissociation depends critically on the size of the Co nanoparticles. Indeed, CO molecules dissociate much more efficiently on the larger nanoparticles (15 nm) than on the smaller particles (4 nm). We further observed a strong increase in the dissociation rate of adsorbed CO upon exposure to hydrogen, clearly demonstrating that the CO dissociation on cobalt nanoparticles is assisted by hydrogen. Our results suggest that the ability of cobalt nanoparticles to dissociate hydrogen is the main parameter determining the reactivity of cobalt nanoparticles in Fischer–Tropsch synthesis.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子

    Near-infrared photoluminescence enhancement in Ge/CdS and Ge/ZnS core/shell nanocrystals: Utilizing IV/II-VI semiconductor epitaxy

    Get PDF
    Ge nanocrystals have a large Bohr radius and a small, size-tunable band gap that may engender direct character via strain or doping. Colloidal Ge nanocrystals are particularly interesting in the development of near-infrared materials for applications in bioimaging, telecommunications and energy conversion. Epitaxial growth of a passivating shell is a common strategy employed in the synthesis of highly luminescent II-VI, III-V and IV-VI semiconductor quantum dots. Here, we use relatively unexplored IV/II-VI epitaxy as a way to enhance the photoluminescence and improve the optical stability of colloidal Ge nanocrystals. Selected on the basis of their relatively small lattice mismatch compared with crystalline Ge, we explore the growth of epitaxial CdS and ZnS shells using the successive ion layer adsorption and reaction method. Powder X-ray diffraction and electron microscopy techniques, including energy dispersive X-ray spectroscopy and selected area electron diffraction, clearly show the controllable growth of as many as 20 epitaxial monolayers of CdS atop Ge cores. In contrast, Ge etching and/or replacement by ZnS result in relatively small Ge/ZnS nanocrystals. The presence of an epitaxial II-VI shell greatly enhances the near-infrared photoluminescence and improves the photoluminescence stability of Ge. Ge/II-VI nanocrystals are reproducibly 1-3 orders of magnitude brighter than the brightest Ge cores. Ge/4.9CdS core/shells show the highest photoluminescence quantum yield and longest radiative recombination lifetime. Thiol ligand exchange easily results in near-infrared active, water-soluble Ge/II-VI nanocrystals. We expect this synthetic IV/II-VI epitaxial approach will lead to further studies into the optoelectronic behavior and practical applications of Si and Ge-based nanomaterials

    Excited-State Dynamics in Colloidal Semiconductor Nanocrystals

    Get PDF
    corecore