9 research outputs found

    MicroRNA inhibition using antimiRs in acute human brain tissue sections

    Get PDF
    Antisense inhibition of microRNAs is an emerging preclinical approach to pharmacoresistant epilepsy. A leading candidate is an "antimiR" targeting microRNA-134 (ant-134), but testing to date has used rodent models. Here, we develop an antimiR testing platform in human brain tissue sections. Brain specimens were obtained from patients undergoing resective surgery to treat pharmacoresistant epilepsy. Neocortical specimens were submerged in modified artificial cerebrospinal fluid (ACSF) and dissected for clinical neuropathological examination, and unused material was transferred for sectioning. Individual sections were incubated in oxygenated ACSF, containing either ant-134 or a nontargeting control antimiR, for 24 h at room temperature. RNA integrity was assessed using BioAnalyzer processing, and individual miRNA levels were measured using quantitative reverse transcriptase polymerase chain reaction. Specimens transported in ACSF could be used for neuropathological diagnosis and had good RNA integrity. Ant-134 mediated a dose-dependent knockdown of miR-134, with approximately 75% reduction of miR-134 at 1 μmol L-1 and 90% reduction at 3 μmol L-1 . These doses did not have off-target effects on expression of a selection of three other miRNAs. This is the first demonstration of ant-134 effects in live human brain tissues. The findings lend further support to the preclinical development of a therapy that targets miR-134 and offer a flexible platform for the preclinical testing of antimiRs, and other antisense oligonucleotide therapeutics, in human brain

    Ex vivo drug sensitivity screening predicts response to temozolomide in glioblastoma patients and identifies candidate biomarkers

    Get PDF
    Background: Patient-derived glioma stem-like cells (GSCs) have become the gold-standard in neuro-oncological research; however, it remains to be established whether loss of in situ microenvironment affects the clinically-predictive value of this model. We implemented a GSC monolayer system to investigate in situ-in vitro molecular correspondence and the relationship between in vitro and patient response to temozolomide (TMZ). Methods: DNA/RNA-sequencing was performed on 56 glioblastoma tissues and 19 derived GSC cultures. Sensitivity to TMZ was screened across 66 GSC cultures. Viability readouts were related to clinical parameters of corresponding patients and whole-transcriptome data. Results: Tumour DNA and RNA sequences revealed strong similarity to corresponding GSCs despite loss of neuronal and immune interactions. In vitro TMZ screening yielded three response categories which significantly correlated with patient survival, therewith providing more specific prediction than the binary MGMT marker. Transcriptome analysis identified 121 genes related to TMZ sensitivity of which 21were validated in external datasets. Conclusion:GSCs retain patient-unique hallmark gene expressions despite loss of their natural environment. Drug screening using GSCs predicted patient response to TMZ more specifically than MGMT status, while transcriptome analysis identified potential biomarkers for this response. GSC drug screening therefore provides a tool to improve drug development and precision medicine for glioblastoma.</p

    Microvascular stabilization via blood-brain barrier regulation prevents seizure activity

    No full text
    Blood-brain barrier (BBB) dysfunction is associated with worse epilepsy outcomes however the underlying molecular mechanisms of BBB dysfunction remain to be elucidated. Tight junction proteins are important regulators of BBB integrity and in particular, the tight junction protein claudin-5 is the most enriched in brain endothelial cells and regulates size-selectivity at the BBB. Additionally, disruption of claudin-5 expression has been implicated in numerous disorders including schizophrenia, depression and traumatic brain injury, yet its role in epilepsy has not been fully deciphered. Here we report that claudin-5 protein levels are significantly diminished in surgically resected brain tissue from patients with treatment-resistant epilepsy. Concomitantly, dynamic contrast-enhanced MRI in these patients showed widespread BBB disruption. We show that targeted disruption of claudin-5 in the hippocampus or genetic heterozygosity of claudin-5 in mice exacerbates kainic acid-induced seizures and BBB disruption. Additionally, inducible knockdown of claudin-5 in mice leads to spontaneous recurrent seizures, severe neuroinflammation, and mortality. Finally, we identify that RepSox, a regulator of claudin-5 expression, can prevent seizure activity in experimental epilepsy. Altogether, we propose that BBB stabilizing drugs could represent a new generation of agents to prevent seizure activity in epilepsy patients

    Comparative analysis of deeply phenotyped GBM cohorts of 'short-term' and 'long-term' survivors.

    Get PDF
    peer reviewedBACKGROUND: Glioblastoma (GBM) is an aggressive brain cancer that typically results in death in the first 15 months after diagnosis. There have been limited advances in finding new treatments for GBM. In this study, we investigated molecular differences between patients with extremely short (≤ 9 months, Short term survivors, STS) and long survival (≥ 36 months, Long term survivors, LTS). METHODS: Patients were selected from an in-house cohort (GLIOTRAIN-cohort), using defined inclusion criteria (Karnofsky score > 70; age < 70 years old; Stupp protocol as first line treatment, IDH wild type), and a multi-omic analysis of LTS and STS GBM samples was performed. RESULTS: Transcriptomic analysis of tumour samples identified cilium gene signatures as enriched in LTS. Moreover, Immunohistochemical analysis confirmed the presence of cilia in the tumours of LTS. Notably, reverse phase protein array analysis (RPPA) demonstrated increased phosphorylated GAB1 (Y627), SRC (Y527), BCL2 (S70) and RAF (S338) protein expression in STS compared to LTS. Next, we identified 25 unique master regulators (MR) and 13 transcription factors (TFs) belonging to ontologies of integrin signalling and cell cycle to be upregulated in STS. CONCLUSION: Overall, comparison of STS and LTS GBM patients, identifies novel biomarkers and potential actionable therapeutic targets for the management of GBM
    corecore