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Abstract
Background  Glioblastoma (GBM) is an aggressive brain cancer that typically results in death in the first 15 months after 
diagnosis. There have been limited advances in finding new treatments for GBM. In this study, we investigated molecular 
differences between patients with extremely short (≤ 9 months, Short term survivors, STS) and long survival (≥ 36 months, 
Long term survivors, LTS).
Methods  Patients were selected from an in-house cohort (GLIOTRAIN-cohort), using defined inclusion criteria (Karnofsky 
score > 70; age < 70 years old; Stupp protocol as first line treatment, IDH wild type), and a multi-omic analysis of LTS and 
STS GBM samples was performed.
Results  Transcriptomic analysis of tumour samples identified cilium gene signatures as enriched in LTS. Moreover, Immu-
nohistochemical analysis confirmed the presence of cilia in the tumours of LTS. Notably, reverse phase protein array analysis 
(RPPA) demonstrated increased phosphorylated GAB1 (Y627), SRC (Y527), BCL2 (S70) and RAF (S338) protein expres-
sion in STS compared to LTS. Next, we identified 25 unique master regulators (MR) and 13 transcription factors (TFs) 
belonging to ontologies of integrin signalling and cell cycle to be upregulated in STS.
Conclusion  Overall, comparison of STS and LTS GBM patients, identifies novel biomarkers and potential actionable thera-
peutic targets for the management of GBM.
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Introduction

Glioblastoma (GBM) is the most aggressive primary glioma 
in adults [1], despite improvements in the standard of care 
(Stupp protocol), surgical advances and targeted therapies, 
patient outcome remains poor [2, 3]. Indeed, as almost all 
GBM patients suffer from disease progression and recur-
rence, there is an urgent need to identify new treatments for 
GBM. Notably, few biomarkers are currently available for 
prognostication in the GBM setting. The most robust prog-
nostic molecular biomarker is MGMT promoter methyla-
tion [4]. Detection of IDH mutation associated with better 

in diffuse glioma rules out the diagnosis of GBM according 
to the novel classification published by the World Health 
Organisation (WHO) [5]. While these molecular biomark-
ers harbour value for the clinical management of GBM 
patients, and may predict response to therapy, MGMT pro-
motor methylation is not exhaustive and, in many cases, 
fail to accurately predict the patient outcome or therapeu-
tic response [6]. Therefore, there exists an urgent need to 
identify and develop effective biomarkers associated with 
prognosis and response to treatment, particularly for newer 
treatment modalities.

In addition to the aforementioned biological mark-
ers, Karnofsky Performance status (KPS) and extent of 
resection (EoR) can be indicative of patient outcome [7]. 
Interestingly, a small number of patients (as little as 2%) 
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respond well to standard of care (SOC) therapy and survive 
beyond 36 months. This unique patient cohort are defined 
as long-term survivors (LTS) [8]. Previous efforts to define 
the unique LTS population via analysis of clinical, genetic, 
epigenetic and molecular feature patterns has been unsuc-
cessful, and no robust biomarkers or signatures have been 
identified. Therefore, the clinical management of GBM, 
and in particular the identification of LTS GBM patients, 
urgently requires novel and comprehensive biomarkers.

In this study, we aimed to investigate the differences in 
molecular characteristics and biological pathways in GBM 
tumors from LTS when compared with short-term survivors 
(STS patients). We hypothesized that based on the con-
cept of ‘natural pre-selection’, such ‘extreme phenotypes’ 
can be compared to identify and characterise phenotypes 
and signaling pathways that are functional drivers of GBM 
progression (activated in STS) or resistance (activated in 
LTS). These could represent novel therapeutics targets as 
well as novel biomarkers. This strategy has previously been 
successful in elucidating metabolic aberrations leading to 
obesity, but so far has not been widely applied to GBM [9]. 
We therefore selected STS and LTS patients from an in-
house cohort (GLIOTRAIN; GT) [10], and performed an 

unbiased, in-depth transcriptomic and (phospho)proteomic 
analyses on the STSs and LTSs of this cohort. Combined 
transcriptomic and (phospho)proteomic analyses revealed 
putative biomarkers which may be prognostic and facilitate 
the discovery of new treatments for GBM.

Materials and methodology

Clinical data collection for GLIOTRAIN (GT) patient 
cohort

The GT cohort comprises GBM tumors collected across 
four clinical centers: RCSI (Beaumont Hospital, Dublin, 
Ireland), ICM (Paris, France), EMC (Rotterdam, Nether-
lands), and LIH (Luxembourg, in collaboration with the 
Neurosurgical Department of the Centre Hospitalier de 
Luxembourg).  All patient samples met the GLIOTRAIN 
biobank inclusion criteria [10] and were divided into Short-
term survivors (STS) (≤ 9 months), Intermediate-term survi-
vors (ITS) (> 9 and < 36 months), and Long-term survivors 
(LTS) (≥ 36 months) based on their overall survival (OS) 
among the N = 133 included patients.

Graphical abstract 

Keywords  Glioblastoma · Reverse phase protein array · RNA-sequencing · Transcriptomics · Cilium · Cell cycle · 
Apoptosis · Short term survivors · Long term survivors
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Reverse phase protein array (RPPA) analysis

The entire GT cohort, consisting of N =133 samples, were 
analysed via RPPA [11]. 7 samples were removed due to ini-
tial quality control fail. 72 antibodies were selected to quan-
tify proteins associated with different signalling pathways 
[12]. Microvigene software (v5.1) was used to generate 
spot signal intensities and normalize the spots via protein 
loading [13]. The data was divided into linear values by the 
correction factor to obtain the normalized value [13]. Final 
protein count data was normalized using z-score technique. 
ConsensusClusterPlus package (v1.48.0) was implemented 
for clustering analysis with specific parameters; innerLink-
age = “average”, finalLinkage = “average” and distance= 
“spearman”.

RNA-seq data and transcriptomics analysis

The GT RNA-seq transcriptomics dataset was downloaded 
from the curated GT database (tranSMART) [10]. Count 
data were normalized using variance stabilizing transforma-
tion (VST). DESeq2 (v3.11) package was used to identify 
the differentially expressed genes (DGEs) from RNA-Seq 
data. Heatmaps were generated using ‘Complex Heatmap’ 
(v1.0.12) and Gene Ontology (GO), and Volcano plots 
generated using Bioconductor packages ‘clusterProfiler’ 
(v3.11) and ‘EnhancedVolcano’ (v3.11). GBM subtype clas-
sification [Classical (CL), Mesenchymal (Mes), Proneural 
(PL)] was performed using the ‘gliovis’ tool (http://gliovis.
bioinfo.cnio.es/) as previously published [10].

Master regulator analysis

To obtain master regulators, the Genome Enhancer pipe-
line was employed (www.geneXplain.com) [14–16]. Sig-
nificantly upregulated genes in STSs were analsyed using 
Composite Module Analyst (CMA) [17] to detect potential 
enhancers. To identify the important transcription factors 
(TFs) we:

a.	 ranked TF motifs (PWMs) based on a Yes/No ratio of 
their frequency in promoter sequences. A set of pro-
moter sequences of interested genes is called the Yes 
set, while the promoter sequences of unchanged genes 
under the same experimental condition are called the 
No set. Motifs with a high Yes/No ratio and statistically 
significant enrichment of occurrences in Yes sequences, 
as determined by the binomial p-value, were considered 
important.

b.	 We computed a regulatory score that measures the TF’s 
involvement in controlling genes that encode master 
regulators. The TRANSPATH® database and graph 

search algorithms were used to identify common regu-
lators of the revealed TFs [18]. Master regulators were 
ranked using logFC, CMA score (indicating the gene’s 
potential to be regulated by TFs of interest), and master 
regulator score (indicating the gene product’s potential 
to regulate the activity of TFs).

Immunostaining

Immunostaining was performed as previously published 
[19]. Slides were deparaffinized using xylene, EthOH/water 
gradient (100%, 90%, 70%, 50%, 30%). Antigen retrieval 
was applied using a microwave (400 W for 25 min). Slides 
were blocked using a diluted blocking buffer (5% BSA, 
5% goat serum in PBS with 0.2% triton-x) and incubated 
(100 min/RT) with anti-acetyl-alpha Tubulin primary anti-
body (clone 6-11B-1, Merck, Sigma Aldrich), followed by 
AlexaFluor-594 donkey anti-mouse secondary antibody 
(1:1000 for 90 min/RT, Life Technologies). Finally, slides 
were mounted with DAPI mounting medium and fluores-
cence signal acquired using a Nikon TE 300 Fluorescence 
Microscope and a SPOT RT SE 6 CCD Camera. Appropri-
ate filter blocks for DAPI or AlexaFluor 594 were used to 
capture images with a Nikon 60 × 1.4 NA oil immersion 
objective.

Statistical analysis

The analysis used R (v4.0-4.0) with the functions ‘pairwise’ 
and ‘likelihood t test’ for univariate Cox regression models in 
RPPA and RNA-seq transcriptomic analysis. For RPPA analy-
sis, protein level differences between clusters were identified 
using one-way ANOVA with Tukey’s post hoc tests. Univari-
ate survival analysis was performed using the ‘survminer’ 
(v0.4.4) and ‘survival’ (v2.44-1.1) packages. Visualization of 
all plots was done using ‘ggpubr’ (v0.2) and ‘ggplot2’ (v3.1.1).

Results

Acquisition and stratification of short- and long-
term GBM survivors

To establish a cohort of primary GBM samples for down-
stream interrogation, GBM tumour samples (N = 128) were 
procured from the GLIOTRAIN (GT) biobank [10]. An 
additional N = 5 samples from the LIH biobank were sub-
sequently added to the GT cohort to form the expanded 
GT-cohort (N = 133 patients samples total). Within this 
expanded GT-cohort, patients were stratified based on OS, 
identifying N = 18 STS, N = 82 Intermediate Term Survi-
vors (ITS), and N = 33 LTS (Figure S1). As a first step, we 
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Elevated levels of GAB1 (Y627), SRC (Y527), BCL2 
(S70) and RAF (S338) phosphoproteins associate 
with OS and are differentially expressed in LTS and 
STS

To investigate the association of individual proteins with 
OS, we fitted 72 univariate Cox regression models across 
the expanded-GT cohort (N = 126). Six proteins sig-
nificantly correlated with OS [p27, GAB1 (Y627), SRC 
(Y527), BCLXL, BCL2 (S70), and RAF (S338)] (Table S1; 
Likelihood ratio p-value < 0.05). Nevertheless,  no signifi-
cantly correlated proteins were identified when adjusted for 
multiple comparisons.

As expected, we also identified significant differences 
in median levels of all six proteins  (Table S1) between 
STS and LTS samples when analysed via pairwise t-test 
(Fig. 3A-F). Median levels of phosphorylated SRC (Y527) 
(p = 0.010; -0.15 and 0.49 median level in LTS and STS), 
GAB1 (p = 0.005; 0.45 and 0.01), BCL2 (p = 0.015; -0.49 
and 0.12), RAF (p = 0.03; -0.5 and 0.01) and BCLXL 
(p = 0.010; -0.49 and − 0.46) expression were significantly 
lower in samples of patients with LTS compared to STS 
samples. In contrast, we found significantly greater median 
levels of P27 expression (p = 0.002) (-0.153 median level) in 
LTS samples compared to STS.

Transcriptomic analysis of STS and LTS

We analyzed gene expression variations between STS and 
LTS patient tumors to create transcriptomic signatures to 
define survival groups. Our analysis identified N =1577 
differentially expressed genes (DEGs) (N = 737 down-
regulated and N = 99 upregulated) altered between the two 
groups (Fig.  4A). Among these, Complement C6  (C6), 
Orthodenticle Homeobox 2 (OTX2), and Deleted in AZo-
ospermia  (DAZL) were the most differentially expressed 
down-regulated genes in LTS, while Retinal and Anterior 
Neural fold Homeobox  (RAX) and Insulin gene enhancer 
protein ISL-1 (ISL1) were the most differentially expressed 
up-regulated genes in STS.

GO enrichment analysis was used to identify enriched 
pathways for DEGs in LTS and STS samples. GO Biologi-
cal process (BP) terms were mainly associated with cilium 
gene ontologies such as cilium movement, microtubule 
bundle formation, cilium assembly, and cilium organization 
for extreme responders (p.adjust < 0.01) (Fig. 4B). Upregu-
lated DEGs in STS were enriched with terms such as ani-
mal organ formation, regulation of blood coagulation, and 
regulation of homeostasis (p.adjust < 0.006), among other 
developmental terms (Fig. 4C). Conversely, downregulated 
DEGs in STS were highly enriched in microtubule bundle 
formation, cilium movement, organization and assembly, 

assessed the distribution of PN, CL and Mes gene expres-
sion subtypes [20] across the expanded GT cohort. Clas-
sification into molecular subtypes demonstrated 10.7% PN, 
42.8% CL and 38.9% Mes tumours (Figure S2). Further 
analysis of OS based on molecular subtypes showed no sig-
nificant differences between subtypes (p = 0.4) (Figure S3).

(Phospho-)Protein analysis of GBM samples using 
RPPA demonstrates heterogeneity in key signaling 
pathways in GBM

RPPA analysis quantified signaling proteins in N =126 sam-
ples of the expanded GT cohort [21], which first underwent 
patient-to-patient clustering to identify potential (phospho)
proteomic subtypes. 4 distinct clusters were identified: clus-
ter 1–4, consisting of 30, 58, 21, and 17 samples respec-
tively (Fig.  1 A and 1B). Specifically,  cluster 1 exhibited 
high expression of apoptotic signaling proteins BCLXL, 
SMAC/DIABLO (Fig.  1C and D) and BAX (Figure S4), 
as well as PARP (Fig.  1E), PDK1 and FAK (Figure S4). 
Next,  cluster 2 had high levels of HIF1α, AMPKα, cIAP 
(Fig.  1F-H), cleaved Caspase-9, Caspase 9  (D1315 and 
D330), and APAF1 (Figure S5 A-D). Cluster 3 had signifi-
cantly higher levels of VEGFR2 (Fig. 1I), while cluster 4 
showed increased expression of mTOR (Fig.  1J). Pair-
wise t-test with ANOVA, Tukey HSD p-adjust. < 0.05 was 
applied to compare between clusters.

We repeated clustering to group proteins with similar 
expression across samples. Normalized protein expression 
and clinical parameters of all patients is demonstrated via 
heatmap (Figure S6). We next investigated how clinical fac-
tors affected protein levels. Patients of different sex, age, 
and GBM subtypes were evenly distributed across clus-
ters. Notably, LTS patients were found in clusters 1, 2, and 
3 (26.66%, 24.13%, 38.09%), while STS samples were 
mainly in clusters 2 and 3 (17.24%, 28.57%), but not in 
clusters 1 and 4.

Cluster-specific survival was analysed using patients’ 
OS time in months (Fig. 2). Although cluster 4 had a trend 
towards shorter OS compared to clusters 1–3, no significant 
differences were found between clusters (pairwise t-test, 
p = 0.08) (Fig. 2A). Silhouette analysis indicated that clus-
ters 1 and 4 were the most clearly defined clusters, with 
the highest separation (Fig. 2B). Cluster 1 had a silhouette 
coefficient of 0.75, and cluster 4 had a coefficient of 0.85, 
while clusters 2 and 3 had coefficients of 0.43 and 0.62, 
respectively.
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Fig. 1  Identification of 4 (phospho-)protein clusters in GBM samples. 
(A) Elbow plot indicates the relative change in area under CDF curve 
vs. the k clusters. (B) Unsupervised CNF clustering for N = 126 sam-
ples indicates 4 distinct clusters. Boxplots reveal higher median expres-
sion of protein levels at cluster 1 for BCLXL (C), SMAC/DIABLO 

(D), and PARP (E); cluster 2 for HIF1α (F), AMPKα (G), and CIAP 
(H); cluster 3 for VEGFREC2 (I); and cluster 4 for mTOR(2481) (J). 
Likelihood-ratio t-test was used to calculate the significant difference 
between each cluster (ANOVA, Tukey HSD p-adjust. < 0.05)
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Master Regulator analysis reveals signalling 
proteins and upregulated TFs in STS samples

We used a Master Regulator analysis to identify new tar-
getable signaling pathways by examining 1577 DEGs and 
locating clusters of TF binding sites in upstream regulatory 
regions. We identified 263 TFs and enhancers targeted by 
them, and then used CMA to identify two modules contain-
ing 13 TFs regulating regions of our genes of interest [17]. 
Using the TRANSPATH® database [18], we reconstructed 
the signaling network, identifying 25 distinct master regu-
lators and 13 TFs in our upregulated gene network in STS 
samples in comparison to LTS samples (Figure S7). These 
could be novel targets for inhibiting overactivated signal-
ing pathways in GBM. Table S2 shows the lists of identi-
fied master regulators and their associations with pathways, 
such as integrin signaling and cell cycle regulation. We 
did not find any significantly enriched TFs in promoters of 
downregulated genes in the STS versus LTS comparison, in 
accordance with previous workflow publications [22].

as well as cilium and flagellum dependent cell motility 
(p.adjust < 2e-04) (Fig. 4D).

A cilium gene signature is prognostic within the GT 
cohort

As GO analysis revealed most genes related to cilium anno-
tations, we next assessed the relationship between patient 
survival and cilium gene expression. This identified a total 
of N = 44 genes involved in cilium gene ontologies. Survival 
analysis based on these 44 genes within the-expanded GT 
cohort, revealed an improved OS in tumours with higher 
cilium gene expression (p < 0.001) (Fig. 5A).

Since cilium gene signatures appear to be a positive 
prognostic maker in the expanded GT cohort, we performed 
IHC to assess ciliae presence in a representative cohort of 
LTS patients. We analysed three STS samples (GT.02.01, 
GT.02.02, GT.02.05) (Fig.  5B) and three LTS samples 
(GT.02.27, GT.02.39, GT.02.42) (Fig. 5C) for ciliae expres-
sion using anti-acetyl-alpha Tubulin as marker of ciliae 
[19]. Indeed, two of the three LTS samples analysed showed 
a strong presence of ciliae, which was not observed in any 
of the STS tumour samples.

Fig. 2  OS and silhouette plot for RPPA data across the GT cohort. 
(A) OS analysis plot showing the survival rate of all samples present 
in four different clusters. (B) Silhouette plot displayed a measure of 

how close each sample in one cluster is to sample in the neighbouring 
clusters. ((N = 30 (cluster 1), N = 58 (cluster 2), N = 21 (cluster 3) and 
N = 17 (cluster 4))
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microenvironments [26, 27]. Cluster 3 has elevated VEGFR2 
protein levels indicating it is enriched with the Mes subtype 
and may be more amenable to anti-angiogenic therapy [28, 
29]. Finally, cluster 4 has high phosphorylation of mTOR 
protein at Ser-2481 indicating higher M2 phenotype expres-
sion in TAMs, and mTOR suppression might reduce it [30].

We found 6 potential protein markers associated with 
OS in the merged GT cohort. Indeed, SRC(Y527) and RAF 
are associated with cell proliferation pathways [31, 32], and 
STS samples had higher median levels of these proteins, 
indicating their contribution to cancer tissue growth. More-
over,  GAB1, which plays a significant role in cancer cell 
signaling pathways [33], had elevated levels in STS samples 
and could lead to reduced OS. BCL2 median protein levels 
were also higher in STS samples compared to LTS samples, 
and drugs such as venetoclax which selectively inhibits 
BCL2 may be considered [34].

Our study investigated transcriptomic differences 
between STS and LTS in GBM samples. The analysis 
revealed an enrichment of cilium-related GO annotations in 
LTS samples, indicating a potential role of cilia in improv-
ing OS in GBM. Overall, 44 genes with cilium-related GO 
terms were identified, and higher median expression of these 

Discussion

The project aimed to discover new prognostic biomarkers 
and new therapeutic targets for GBM. To achieve this, we 
compared patients with favorable outcomes (LTS) to those 
with unfavorable outcomes (STS) using the internal GT 
cohort and RNA-seq transcriptomics and RPPA molecular 
datasets. The differences between the LTS and STS samples 
were analysed to identify potential biomarkers.

RPPA analysis on the entire GT cohort identified 4 clus-
ters of (phospho)-proteins in GBM, revealing significant 
signaling heterogeneity. Although no significant difference 
in patients’ OS was observed, cluster 1 showed higher lev-
els of BCLXL, BAX, PARP, PDK1, and FAK compared to 
the other clusters [23]. FAK and BAX were identified as 
potential targets for GBM treatment, while samples in clus-
ter 1 with higher BCLXL levels could be treated with BH3 
mimetics, and those with elevated SMAC/DIABLO levels 
could benefit from Smac inhibitor therapy [23–25].

Cluster 2 exhibits higher levels of cleaved Caspase 9 
and Caspase 9, cIAP1, HIF1α, APAF1, and AMPKα sug-
gesting an activation of the mitochondrial caspase pathway 
and a dysfunctional vasculature with hypoxia-sustaining 

Fig. 3  Proteins differentiating STS and LTS. Boxplots for proteins P27, GAB1 Y627, SRC Y527, BCLXL, BCL2 S70 and RAF S338 with p value 
for STS and LTS in GLIOTRAIN cohort. Likelihood ratio p-value < 0.05. N = 18(STS), N = 30(LTS)
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Fig. 4  (A). Volcano plot showing DEGs for STS vs. LTS samples. (B) Overall, GO analysis for DEGs. (N = 1577). (C) GO annotations for up 
regulated genes enriched in STS samples. (D) GO annotations for down regulated genes enriched in LTS samples
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signaling pathways, including cell cycle, inflammation reg-
ulation, STAT signaling, EMT, and integrin cell signaling 
pathways [37]. The integrin family of transmembrane adhe-
sion receptors plays a crucial role in cell interactions with 
the surroundings, including cytoskeleton organization, stim-
ulation of cell proliferation, and rescue from programmed 
cell death [38, 39]. Specific integrins are upregulated in 
tumour cells and stromal cells in the tumour microenviron-
ment, suggesting that targeting integrins could be an effec-
tive therapeutic strategy for GBM treatment [38, 40].

genes was associated with better prognosis. The presence of 
cilia in LTS was verified through IHC. Previous work has 
identified defects in ciliogenesis in glioblastoma [35], and 
cilia have been identified on cells expressing Ki67 and cells 
associated with pseudopalisading necroses [36]. Our study 
suggests that cilia may serve as a new prognostic biomarker 
and potential therapeutic target in GBM, and further valida-
tion and functional studies are required to explore their role.

Further analysis found master regulators of upregulated 
genes in STS, which are related to important pro-oncogenic 

Fig. 5  (A) OS analysis for the median expression for the cilium genes 
mapped from GO analysis. 44 cilium genes were mapped, and their 
median expression were taken for the GT dataset. The pink line dem-
onstrates lower level of expression from the median value and the 

blue line shows higher level of expression from the calculated median 
value. Detection of ciliae in (B) STS and (C) LTS GBM samples using 
an anti-acetyl-alpha Tubulin antibody (red; middle panel). Nuclei were 
counterstained with DAPI (blue). Scale bar = 50 μm
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patients. Future experimental and clinical validation of our 
key findings is required.
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