147 research outputs found

    Signal epidetection in third-harmonic generation microscopy of turbid media

    No full text
    International audienceThird-harmonic generation (THG) imaging of thick samples or large organisms requires TH light to be epicollected through the focusing objective. In this study we first estimate the amount of backward-to-forward TH radiation created by an isolated object as a function of size and spatial frequencies in the object. Theory and model experiments indicate that no significant signal can be epidetected from a (biological) dielectric structure embedded in a transparent medium. In contrast, backward emission is observed from metal nanoparticles where THG is partly a surface effect. We then address the case of an object embedded in a turbid medium. Experiments and Monte Carlo simulations show that epidetection is possible when the absorption mean free path of harmonic light in the medium exceeds its reduced scattering length, and that epicollection efficiency critically depends on the microscope field-of-view even at shallow depths, because backscattered light is essentially diffusive. These observations provide guidelines for optimizing epidetection in third-harmonic, second-harmonic, or CARS imaging of thick tissues

    Accuracy of correction in modal sensorless adaptive optics.

    No full text
    International audienceWe investigate theoretically and experimentally the parameters governing the accuracy of correction in modal sensorless adaptive optics for microscopy. On the example of two-photon fluorescence imaging, we show that using a suitable number of measurements, precise correction can be obtained for up to 2 radians rms aberrations without optimising the aberration modes used for correction. We also investigate the number of photons required for accurate correction when signal acquisition is shot-noise limited. We show that only 10(4) to 10(5) photons are required for complete correction so that the correction process can be implemented with limited extra-illumination and associated photoperturbation. Finally, we provide guidelines for implementing an optimal correction algorithm depending on the experimental conditions

    Dynamic aberration correction for multiharmonic microscopy.

    No full text
    International audienceWe demonstrate image-based aberration correction in a third-harmonic generation (THG) microscope. We describe a robust, mostly sample-independent correction scheme relying on prior measurement of the influence of aberration modes produced by a deformable mirror on the quality of THG images. We find that using image sharpness as an image quality metric, correction of N aberration modes is achieved using 2(2N+1) measurements in a variety of samples. We also report aberration correction in combined multiharmonic and two-photon excited fluorescence experiments. Finally, we demonstrate time-dependent adaptive THG imaging in developing embryonic tissue

    Fourier-transform coherent anti-Stokes Raman scattering microscopy.

    No full text
    International audienceWe report a novel Fourier-transform-based implementation of coherent anti-Stokes Raman scattering (CARS) microscopy. The method employs a single femtosecond laser source and a Michelson interferometer to create two pulse replicas that are fed into a scanning multiphoton microscope. By varying the time delay between the pulses, we time-resolve the CARS signal, permitting easy removal of the nonresonant background while providing high resolution, spectrally resolved images of CARS modes over the laser bandwidth (approximately 1500 cm(-1)). We demonstrate the method by imaging polystyrene beads in solvent

    Multiplexed two-photon microscopy of dynamic biological samples with shaped broadband pulses.

    No full text
    International audienceCoherent control can be used to selectively enhance or cancel concurrent multiphoton processes, and has been suggested as a means to achieve nonlinear microscopy of multiple signals. Here we report multiplexed two-photon imaging in vivo with fast pixel rates and micrometer resolution. We control broadband laser pulses with a shaping scheme combining diffraction on an optically-addressed spatial light modulator and a scanning mirror allowing to switch between programmable shapes at kiloHertz rates. Using coherent control of the two-photon excited fluorescence, it was possible to perform selective microscopy of GFP and endogenous fluorescence in developing Drosophila embryos. This study establishes that broadband pulse shaping is a viable means for achieving multiplexed nonlinear imaging of biological tissues

    Optical in situ size determination of single lanthanide-ion doped oxide nanoparticles

    No full text
    International audienceWe show that the size of a lanthanide-ion doped nanoparticle can be accurately determined from its luminosity. The optically determined size distribution is in very good agreement with the distribution obtained from transmission electron microscopy. These data confirm that single nanoparticles are visualized in microscopy experiments. Nanoparticles as small as 13 nm are detectable with integration times of 500 ms. (c) 2006 American Institute of Physics

    Dispersion-based pulse shaping for multiplexed two-photon fluorescence microscopy

    No full text
    International audienceWe demonstrate selective two-photon excited fluorescence microscopy with shaped pulses produced with a simple yet efficient scheme based on dispersive optical components. The pulse train from a broadband oscillator is split into two subtrains that are sent through different amounts of glass. Beam recombination results in pulse-shape switching at a rate of 150 MHz. Time-resolved photon counting detection then provides two simultaneous images resulting from selective two-photon excitation, as demonstrated in a live embryo. Although less versatile than programmable pulse-shaping devices, this novel arrangement significantly improves the performance of selective microscopy using broadband shaped pulses while simplifying the experimental setup. Cop. 2010 Optical Society of America

    Velocimetric third-harmonic generation microscopy: micrometer-scale quantification of morphogenetic movements in unstained embryos

    Get PDF
    International audienceWe demonstrate the association of third-harmonic generation (THG) microscopy and particle image velocimetry (PIV) analysis as a novel functional imaging technique for automated micrometer-scale characterization of morphogenetic movements in developing embryos. Using a combined two-photon-excited fluorescence and THG microscope, we characterize the optical properties of Drosophila embryos and show that sustained THG imaging does not perturb sensitive developmental dynamics. Velocimetric THG imaging provides a quantitative description of the dynamics of internal structures in unstained wild-type and mutant embryos

    Microscopies multiharmoniques pour l'imagerie structurale de tissus intacts [Second- and third-harmonic generation microscopies for the structural imaging of intact tissues]

    Get PDF
    International audienceDepuis son introduction en 1990, la microscopie de fluorescence excitée à deux photons (Fluo-2P) s'est peu à peu imposée comme une méthode incontournable d'imagerie de tissus intacts à l'échelle sub-cellulaire. En effet, la caractéristique la plus remarquable de la microscopie multiphotonique est de maintenir une résolution tridimensionnelle micrométrique lors de l'observation en profondeur d'un milieu optiquement diffusant. Combinée aux technologies de protéines-fusion (type GFP), cette approche est aujourd'hui utilisée dans de nombreux domaines, notamment en neurophysiologie. Un autre attrait de ce type d'imagerie réside dans l'utilisation possible d'autres phénomènes optiques non linéaires (c'est-à-dire impliquant l'interaction simultanée de plusieurs photons avec une molécule observée) comme source de contraste. Ainsi, les microscopies par génération de second harmonique (GSH) et par génération de troisième harmonique (GTH) permettent également d'observer des milieux complexes et fournissent des informations complémentaires par rapport à l'imagerie de fluorescence. Certaines structures cellulaires ou tissulaires fournissent, en effet, ce type de réponse optique sans nécessiter de marquage exogène. La microscopie GSH permet, par exemple, de détecter le collagène fibrillaire et la microscopie GTH permet d'observer sans marquage le développement embryonnaire de petits organismes. One principal advantage of multiphoton excitation microscopy is that it preserves its three-dimensional micrometer resolution when imaging inside light-scattering samples. For that reason two-photon-excited fluorescence microscopy has become an invaluable tool for cellular imaging in intact tissue, with applications in many fields of physiology. This success has driven increasing interest in other forms of nonlinear microscopy that can provide additional information on cells and tissues, such as second- (SHG) and third- (THG) harmonic generation microscopies. In recent years, significant progress has been made in understanding the contrast mechanisms of these recent methodologies, and high-resolution imaging based on intrinsic sources of signal has been demonstrated in cells and tissues. Harmonic generation exhibits structural rather than chemical specificity and can be obtained from a variety of non-fluorescent samples. SHG is observed specifically in dense, non-centrosymmetric arrangements of polarizable molecules, such as collagen fibrils, myofilaments, and polarized microtubule bundles. SHG imaging is therefore emerging as a novel approach for studying processes such as the physiopathological remodelling of the collagen matrix and myofibrillogenesis in intact tissue. THG does not require a non-centrosymmetric system; however no signal can be obtained from a homogeneous medium. THG imaging therefore provides maps of sub-micrometer heterogeneities (interfaces, inclusions) in unstained samples, and can be used as a general purpose structural imaging tool. Recent studies showed that this technique can be used to image embryo development in small organisms and to characterize the accumulation of large lipid bodies in specialized cells. SHG and THG microscopy both rely on femtosecond laser technology and are easily combined with two-photon microscopy
    • …
    corecore