47 research outputs found

    Imipenem resistance of Pseudomonas in pneumonia: a systematic literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pneumonia, and particularly nosocomial (NP) and ventilator-associated pneumonias (VAP), results in high morbidity and costs. NPs in particular are likely to be caused by <it>Pseudomonas aeruginosa </it>(PA), ~20% of which in observational studies are resistant to imipenem. We sought to identify the burden of PA imipenem resistance in pneumonia.</p> <p>Methods</p> <p>We conducted a systematic literature review of randomized controlled trials (RCT) of imipenem treatment for pneumonia published in English between 1993 and 2008. We extracted study, population and treatment characteristics, and proportions caused by PA. Endpoints of interest were: PA resistance to initial antimicrobial treatment, clinical success, microbiologic eradication and on-treatment emergence of resistance of PA.</p> <p>Results</p> <p>Of the 46 studies identified, 20 (N = 4,310) included patients with pneumonia (imipenem 1,667, PA 251; comparator 1,661, PA 270). Seven were double blind, and 7 included US data. Comparator arms included a β-lactam (17, [penicillin 6, carbapenem 4, cephalosporin 7, monobactam 1]), aminoglycoside 2, vancomycin 1, and a fluoroquinolone 5; 5 employed double coverage. Thirteen focused exclusively on pneumonia and 7 included pneumonia and other diagnoses. Initial resistance was present in 14.6% (range 4.2-24.0%) of PA isolates in imipenem and 2.5% (range 0.0-7.4%) in comparator groups. Pooled clinical success rates for PA were 45.2% (range 0.0-72.0%) for imipenem and 74.9% (range 0.0-100.0%) for comparator regimens. Microbiologic eradication was achieved in 47.6% (range 0.0%-100.0%) of isolates in the imipenem and 52.8% (range 0.0%-100.0%) in the comparator groups. Resistance emerged in 38.7% (range 5.6-77.8%) PA isolates in imipenem and 21.9% (range 4.8-56.5%) in comparator groups.</p> <p>Conclusions</p> <p>In the 15 years of RCTs of imipenem for pneumonia, PA imipenem resistance rates are high, and PA clinical success and microbiologic eradication rates are directionally lower for imipenem than for comparators. Conversely, initial and treatment-emergent resistance is more likely with the imipenem than the comparator regimens.</p

    Antiretroviral-naive and -treated HIV-1 patients can harbour more resistant viruses in CSF than in plasma

    Get PDF
    Objectives The neurological disorders in HIV-1-infected patients remain prevalent. The HIV-1 resistance in plasma and CSF was compared in patients with neurological disorders in a multicentre study. Methods Blood and CSF samples were collected at time of neurological disorders for 244 patients. The viral loads were >50 copies/mL in both compartments and bulk genotypic tests were realized. Results On 244 patients, 89 and 155 were antiretroviral (ARV) naive and ARV treated, respectively. In ARV-naive patients, detection of mutations in CSF and not in plasma were reported for the reverse transcriptase (RT) gene in 2/89 patients (2.2%) and for the protease gene in 1/89 patients (1.1%). In ARV-treated patients, 19/152 (12.5%) patients had HIV-1 mutations only in the CSF for the RT gene and 30/151 (19.8%) for the protease gene. Two mutations appeared statistically more prevalent in the CSF than in plasma: M41L (P = 0.0455) and T215Y (P = 0.0455). Conclusions In most cases, resistance mutations were present and similar in both studied compartments. However, in 3.4% of ARV-naive and 8.8% of ARV-treated patients, the virus was more resistant in CSF than in plasma. These results support the need for genotypic resistance testing when lumbar puncture is performe

    Sorption properties of peat's organic matter for U and 226^{226}Ra in mining areas

    No full text
    International audienceThe environmental footprint of former uranium mining activities is a major concern for AREVA who is in charge of monitoring these ancient mining sites. In order to limit the radiological impact on the biosphere we must have a good knowledge of the chemical properties controlling the migration of uranium (U) and its decay products, in particular radium (226^{226}Ra). This present study is focused on an acidic peat land typical of those found in the vicinity of former mining sites in the Limousin region (France). Peat is a complex material which combines in various proportions, many components such as organic compounds (humic and fulvic acids, organic acids, bacteria, fungi) and mineral phases (clay minerals, oxides), each having their own specific reactivity and influence on U(VI) and 226^{226}Ra behavior.This study aims to acquire the sorption properties of U(VI) and 226^{226}Ra on natural organic matter from peat. According to the ion exchange formalism frequently used to describe the sorption behavior of clay-minerals, oxides and more generally soils, the peat sorption properties were successfully determined, i.e. the amount of sorption site types and their selectivity towards U(VI) and 226^{226}Ra. These sorption parameters would then be implemented in geochemical models used for the environmental impact assessment of mining sites

    Chemical reactivity of natural peat towards U and Ra

    No full text
    International audiencePeat is a complex material with several organic constituents that contribute to its high capacity to retain metals. In the context of uranium mining, peat can accumulate high concentrations of uranium and its decay products such as radium. Hence, interaction with peat appears to be a key factor in the understanding of the geochemical mechanisms controlling the fate of these products. This study aims to determine the sorption properties of two trace elements, U(VI) and 226Ra, on natural organic matter from peat. The presented method was applied to both natural peat samples originating from a mining context, with various contents of organic matter (from 40 to 70pc) and detrital loads, and wetland peat with a more than 98pc composition of organic matter. In the present study, considering peat material as a sorbent, its reactivity towards metals and other contaminants can be described as that of an ion-exchanger. A relatively simple model of ion-exchange based on the sorption properties of carboxylic sites has been applied with success to describe the sorption of uranium and radium. In the general overview of the different mechanisms able to control the mobility of these radionuclides in a uranium mining context, organic matter is likely one of the main contributors to radionuclide scavenging even under oxic conditions
    corecore