584 research outputs found

    Coupled wake boundary layer model of wind-farms

    Get PDF
    We present and test the coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a wind-farm. The model couples the traditional, industry-standard wake model approach with a "top-down" model for the overall wind-farm boundary layer structure. This wake model captures the effect of turbine positioning, while the "top-down" portion of the model adds the interactions between the wind-turbine wakes and the atmospheric boundary layer. Each portion of the model requires specification of a parameter that is not known a-priori. For the wake model, the wake expansion coefficient is required, while the "top-down" model requires an effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion coefficient is obtained by matching the predicted mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing depends on turbine positioning and thus can be determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We illustrate the performance of the model by applying it to both developing wind-farms including entrance effects and to fully developed (deep-array) conditions. Comparisons of the CWBL model predictions with results from a suite of large eddy simulations (LES) shows that the model closely represents the results obtained in these high-fidelity numerical simulations. A comparison with measured power degradation at the Horns Rev and Nysted wind-farms shows that the model can also be successfully applied to real wind-farms.Comment: 25 pages, 21 figures, submitted to Journal of Renewable and Sustainable Energy on July 18, 201

    The scattering from generalized Cantor fractals

    Full text link
    We consider a fractal with a variable fractal dimension, which is a generalization of the well known triadic Cantor set. In contrast with the usual Cantor set, the fractal dimension is controlled using a scaling factor, and can vary from zero to one in one dimension and from zero to three in three dimensions. The intensity profile of small-angle scattering from the generalized Cantor fractal in three dimensions is calculated. The system is generated by a set of iterative rules, each iteration corresponding to a certain fractal generation. Small-angle scattering is considered from monodispersive sets, which are randomly oriented and placed. The scattering intensities represent minima and maxima superimposed on a power law decay, with the exponent equal to the fractal dimension of the scatterer, but the minima and maxima are damped with increasing polydispersity of the fractal sets. It is shown that for a finite generation of the fractal, the exponent changes at sufficiently large wave vectors from the fractal dimension to four, the value given by the usual Porod law. It is shown that the number of particles of which the fractal is composed can be estimated from the value of the boundary between the fractal and Porod regions. The radius of gyration of the fractal is calculated analytically.Comment: 8 pages, 4 figures, accepted for publication in J. Appl. Crys

    Nonmonotonic dependence of the absolute entropy on temperature in supercooled Stillinger-Weber silicon

    Full text link
    Using a recently developed thermodynamic integration method, we compute the precise values of the excess Gibbs free energy (G^e) of the high density liquid (HDL) phase with respect to the crystalline phase at different temperatures (T) in the supercooled region of the Stillinger-Weber (SW) silicon [F. H. Stillinger and T. A. Weber, Phys. Rev. B. 32, 5262 (1985)]. Based on the slope of G^e with respect to T, we find that the absolute entropy of the HDL phase increases as its enthalpy changes from the equilibrium value at T \ge 1065 K to the value corresponding to a non-equilibrium state at 1060 K. We find that the volume distribution in the equilibrium HDL phases become progressively broader as the temperature is reduced to 1060 K, exhibiting van-der-Waals (VDW) loop in the pressure-volume curves. Our results provides insight into the thermodynamic cause of the transition from the HDL phase to the low density phases in SW silicon, observed in earlier studies near 1060 K at zero pressure.Comment: This version is accepted for publication in Journal of Statistical Physics (11 figures, 1 table

    A comprehensive map of the mTOR signaling network

    Get PDF
    The mammalian target of rapamycin (mTOR) is a central regulator of cell growth and proliferation. mTOR signaling is frequently dysregulated in oncogenic cells, and thus an attractive target for anticancer therapy. Using CellDesigner, a modeling support software for graphical notation, we present herein a comprehensive map of the mTOR signaling network, which includes 964 species connected by 777 reactions. The map complies with both the systems biology markup language (SBML) and graphical notation (SBGN) for computational analysis and graphical representation, respectively. As captured in the mTOR map, we review and discuss our current understanding of the mTOR signaling network and highlight the impact of mTOR feedback and crosstalk regulations on drug-based cancer therapy. This map is available on the Payao platform, a Web 2.0 based community-wide interactive process for creating more accurate and information-rich databases. Thus, this comprehensive map of the mTOR network will serve as a tool to facilitate systems-level study of up-to-date mTOR network components and signaling events toward the discovery of novel regulatory processes and therapeutic strategies for cancer

    An antisense oligodeoxynucleotide that depletes RI alpha subunit of cyclic AMP-dependent protein kinase induces growth inhibition in human cancer cells.

    Get PDF
    Enhanced expression of the RI alpha subunit of cyclic AMP-dependent protein kinase type I has been correlated with cancer cell growth. We provide evidence that RI alpha is a growth-inducing protein that may be essential for neoplastic cell growth. Human colon, breast, and gastric carcinoma and neuroblastoma cell lines exposed to a 21-mer human RI alpha antisense phosphorothioate oligodeoxynucleotide (S-oligodeoxynucleotide) exhibited growth inhibition with no sign of cytotoxicity. Mismatched sequence (random) S-oligodeoxynucleotides of the same length exhibited no effect. The growth inhibitory effect of RI alpha antisense oligomer correlated with a decrease in the RI alpha mRNA and protein levels and with an increase in RII beta (the regulatory subunit of protein kinase type II) expression. The growth inhibition was abolished, however, when cells were exposed simultaneously to both RI alpha and RII beta antisense S-oligodeoxynucleotides. The RII beta antisense S-oligodeoxynucleotide alone, exhibiting suppression of RII beta along with enhancement of RI alpha expression, led to slight stimulation of cell growth. These results demonstrate that two isoforms of cyclic AMP receptor proteins, RI alpha and RII beta, are reciprocally related in the growth control of cancer cells and that the RI alpha antisense oligodeoxynucleotide, which efficiently depletes the growth stimulatory RI alpha, is a powerful biological tool toward suppression of malignancy

    Morphology and photoluminescence study of titania nanoparticles

    Get PDF
    Titania nanoparticles are prepared by sol–gel chemistry with a poly(ethylene oxide) methyl ether methacrylate-block-poly(dimethylsiloxane)-block-poly(ethylene oxide) methyl ether methacrylate triblock copolymer acting as the templating agent. The sol–gel components—hydrochloric acid, titanium tetraisopropoxide, and triblock copolymer—are varied to investigate their effect on the resulting titania morphology. An increased titania precursor or polymer content yields smaller primary titania structures. Microbeam grazing incidence small-angle X-ray scattering measurements, which are analyzed with a unified fit model, reveal information about the titania structure sizes. These small structures could not be observed via the used microscopy techniques. The interplay among the sol–gel components via our triblock copolymer results in different sized titania nanoparticles with higher packing densities. Smaller sized titania particles, (∼13–20 nm in diameter) in the range of exciton diffusion length, are formed by 2% by weight polymer and show good crystallinity with less surface defects and high oxygen vacancies

    International consensus definitions of clinical trial outcomes for kidney failure: 2020

    Get PDF
    Kidney failure is an important outcome for patients, clinicians, researchers, healthcare systems, payers, and regulators. However, no harmonized international consensus definitions of kidney failure and key surrogates of progression to kidney failure exist specifically for clinical trials. The International Society of Nephrology convened an international multi-stakeholder meeting to develop consensus on this topic. A core group, experienced in design, conduct, and outcome adjudication of clinical trials, developed a database of 64 randomized trials and the 163 included definitions relevant to kidney failure. Using an iterative process, a set of proposed consensus definitions were developed and subsequently vetted by the larger multi-stakeholder group of 83 participants representing 18 different countries. The consensus of the meeting participants was that clinical trial kidney failure outcomes should be comprised of a composite that includes receipt of a kidney transplant, initiation of maintenance dialysis, and death from kidney failure; it may also include outcomes based solely on laboratory measurements of glomerular filtration rate: a sustained low glomerular filtration rate and a sustained percent decline in glomerular filtration rate. Discussion included important considerations, such as (i) recognition of existing nomenclature for kidney failure; (ii) applicability across resource settings; (iii) ease of understanding for all stakeholders; and (iv) avoidance of inappropriate complexity so that the definitions can be used across ranges of populations and trial methodologies. The final definitions reflect the consensus for use in clinical trials
    corecore