496 research outputs found

    Epidemiology, genetics, and subtyping of preserved ratio impaired spirometry (PRISm) in COPDGene.

    Get PDF
    BackgroundPreserved Ratio Impaired Spirometry (PRISm), defined as a reduced FEV1 in the setting of a preserved FEV1/FVC ratio, is highly prevalent and is associated with increased respiratory symptoms, systemic inflammation, and mortality. Studies investigating quantitative chest tomographic features, genetic associations, and subtypes in PRISm subjects have not been reported.MethodsData from current and former smokers enrolled in COPDGene (n = 10,192), an observational, cross-sectional study which recruited subjects aged 45-80 with ≥10 pack years of smoking, were analyzed. To identify epidemiological and radiographic predictors of PRISm, we performed univariate and multivariate analyses comparing PRISm subjects both to control subjects with normal spirometry and to subjects with COPD. To investigate common genetic predictors of PRISm, we performed a genome-wide association study (GWAS). To explore potential subgroups within PRISm, we performed unsupervised k-means clustering.ResultsThe prevalence of PRISm in COPDGene is 12.3%. Increased dyspnea, reduced 6-minute walk distance, increased percent emphysema and decreased total lung capacity, as well as increased segmental bronchial wall area percentage were significant predictors (p-value <0.05) of PRISm status when compared to control subjects in multivariate models. Although no common genetic variants were identified on GWAS testing, a significant association with Klinefelter's syndrome (47XXY) was observed (p-value < 0.001). Subgroups identified through k-means clustering include a putative "COPD-subtype", "Restrictive-subtype", and a highly symptomatic "Metabolic-subtype".ConclusionsPRISm subjects are clinically and genetically heterogeneous. Future investigations into the pathophysiological mechanisms behind and potential treatment options for subgroups within PRISm are warranted.Trial registrationClinicaltrials.gov Identifier: NCT000608764

    Genome-wide association study of smoking behaviours in patients with COPD

    Get PDF
    Background Cigarette smoking is a major risk factor for chronic obstructive pulmonary disease (COPD) and COPD severity. Previous genome-wide association studies (GWAS) have identified numerous single nucleotide polymorphisms (SNPs) associated with the number of cigarettes smoked per day (CPD) and a dopamine beta-hydroxylase (DBH) locus associated with smoking cessation in multiple populations. Objective To identify SNPs associated with lifetime average and current CPD, age at smoking initiation, and smoking cessation in patients with COPD. Methods GWAS were conducted in four independent cohorts encompassing 3441 ever-smoking patients with COPD (Global Initiative for Obstructive Lung Disease stage II or higher). Untyped SNPs were imputed using the HapMap (phase II) panel. Results from all cohorts were meta-analysed. Results Several SNPs near the HLA region on chromosome 6p21 and in an intergenic region on chromosome 2q21 showed associations with age at smoking initiation, both with the lowest p=2x10(-7). No SNPs were associated with lifetime average CPD, current CPD or smoking cessation with p<10(-6). Nominally significant associations with candidate SNPs within cholinergic receptors, nicotinic, alpha 3/5 (CHRNA3/CHRNA5; eg, p=0.00011 for SNP rs1051730) and cytochrome P450, family 2, subfamily A, polypeptide 6 (CYP2A6; eg, p=2.78x10(-5) for a non-synonymous SNP rs1801272) regions were observed for lifetime average CPD, however only CYP2A6 showed evidence of significant association with current CPD. A candidate SNP (rs3025343) in DBH was significantly (p=0.015) associated with smoking cessation. Conclusion The authors identified two candidate regions associated with age at smoking initiation in patients with COPD. Associations of CHRNA3/CHRNA5 and CYP2A6 loci with CPD and DBH with smoking cessation are also likely of importance in the smoking behaviours of patients with COPD

    Joint testing of genotypic and gene-environment interaction identified novel association for BMP4 with non-syndromic CL/P in an Asian population using data from an International Cleft Consortium

    Get PDF
    Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common disorder with complex etiology. The Bone Morphogenetic Protein 4 gene (BMP4) has been considered a prime candidate gene with evidence accumulated from animal experimental studies, human linkage studies, as well as candidate gene association studies. The aim of the current study is to test for linkage and association between BMP4 and NSCL/P that could be missed in genome-wide association studies (GWAS) when genotypic (G) main effects alone were considered.We performed the analysis considering G and interactions with multiple maternal environmental exposures using additive conditional logistic regression models in 895 Asian and 681 European complete NSCL/P trios. Single nucleotide polymorphisms (SNPs) that passed the quality control criteria among 122 genotyped and 25 imputed single nucleotide variants in and around the gene were used in analysis. Selected maternal environmental exposures during 3 months prior to and through the first trimester of pregnancy included any personal tobacco smoking, any environmental tobacco smoke in home, work place or any nearby places, any alcohol consumption and any use of multivitamin supplements. A novel significant association held for rs7156227 among Asian NSCL/P and non-syndromic cleft lip and palate (NSCLP) trios after Bonferroni correction which was not seen when G main effects alone were considered in either allelic or genotypic transmission disequilibrium tests. Odds ratios for carrying one copy of the minor allele without maternal exposure to any of the four environmental exposures were 0.58 (95%CI = 0.44, 0.75) and 0.54 (95%CI = 0.40, 0.73) for Asian NSCL/P and NSCLP trios, respectively. The Bonferroni P values corrected for the total number of 117 tested SNPs were 0.0051 (asymptotic P = 4.39*10(-5)) and 0.0065 (asymptotic P = 5.54*10(-5)), accordingly. In European trios, no significant association was seen for any SNPs after Bonferroni corrections for the total number of 120 tested SNPs.Our findings add evidence from GWAS to support the role of BMP4 in susceptibility to NSCL/P originally identified in linkage and candidate gene association studies

    Evidence of gene-environment interaction for two genes on chromosome 4 and environmental tobacco smoke in controlling the risk of nonsyndromic cleft palate

    Get PDF
    Nonsyndromic cleft palate (CP) is one of the most common human birth defects and both genetic and environmental risk factors contribute to its etiology. We conducted a genome-wide association study (GWAS) using 550 CP case-parent trios ascertained in an international consortium. Stratified analysis among trios with different ancestries was performed to test for GxE interactions with common maternal exposures using conditional logistic regression models. While no single nucleotide polymorphism (SNP) achieved genome-wide significance when considered alone, markers in SLC2A9 and the neighboring WDR1 on chromosome 4p16.1 gave suggestive evidence of gene-environment interaction with environmental tobacco smoke (ETS) among 259 Asian trios when the models included a term for GxE interaction. Multiple SNPs in these two genes were associated with increased risk of nonsyndromic CP if the mother was exposed to ETS during the peri-conceptual period (3 months prior to conception through the first trimester). When maternal ETS was considered, fifteen of 135 SNPs mapping to SLC2A9 and 9 of 59 SNPs in WDR1 gave P values approaching genome-wide significance (10-6<P<10-4) in a test for GxETS interaction. SNPs rs3733585 and rs12508991 in SLC2A9 yielded P = 2.26×10-7 in a test for GxETS interaction. SNPs rs6820756 and rs7699512 in WDR1 also yielded P = 1.79×10-7 and P = 1.98×10-7 in a 1 df test for GxE interaction. Although further replication studies are critical to confirming these findings, these results illustrate how genetic associations for nonsyndromic CP can be missed if potential GxE interaction is not taken into account, and this study suggest SLC2A9 and WDR1 should be considered as candidate genes for CP. © 2014 Wu et al

    Genome-wide association study identifies peanut allergy-specific loci and evidence of epigenetic mediation in US children

    Get PDF
    Food allergy (FA) affects 2%-10% of US children and is a growing clinical and public health problem. Here we conduct the first genome-wide association study of well-defined FA, including specific subtypes (peanut, milk and egg) in 2,759 US participants (1,315 children and 1,444 parents) from the Chicago Food Allergy Study, and identify peanut allergy (PA)-specific loci in the HLA-DR and -DQ gene region at 6p21.32, tagged by rs7192 (P=5.5 × 10 -8) and rs9275596 (P=6.8 × 10 -10), in 2,197 participants of European ancestry. We replicate these associations in an independent sample of European ancestry. These associations are further supported by meta-analyses across the discovery and replication samples. Both single-nucleotide polymorphisms (SNPs) are associated with differential DNA methylation levels at multiple CpG sites (

    Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations.

    Get PDF
    Asthma is a common disease with a complex risk architecture including both genetic and environmental factors. We performed a meta-analysis of North American genome-wide association studies of asthma in 5,416 individuals with asthma (cases) including individuals of European American, African American or African Caribbean, and Latino ancestry, with replication in an additional 12,649 individuals from the same ethnic groups. We identified five susceptibility loci. Four were at previously reported loci on 17q21, near IL1RL1, TSLP and IL33, but we report for the first time, to our knowledge, that these loci are associated with asthma risk in three ethnic groups. In addition, we identified a new asthma susceptibility locus at PYHIN1, with the association being specific to individuals of African descent (P = 3.9 × 10(-9)). These results suggest that some asthma susceptibility loci are robust to differences in ancestry when sufficiently large samples sizes are investigated, and that ancestry-specific associations also contribute to the complex genetic architecture of asthma

    Analysis of genetically driven alternative splicing identifies FBXO38 as a novel COPD susceptibility gene

    Get PDF
    While many disease-associated single nucleotide polymorphisms (SNPs) are associated with gene expression (expression quantitative trait loci, eQTLs), a large proportion of complex disease genome-wide association study (GWAS) variants are of unknown function. Some of these SNPs may contribute to disease by regulating gene splicing. Here, we investigate whether SNPs that are associated with alternative splicing (splice QTL or sQTL) can identify novel functions for existing GWAS variants or suggest new associated variants in chronic obstructive pulmonary disease (COPD). RNA sequencing was performed on whole blood from 376 subjects from the COPDGene Study. Using linear models, we identified 561,060 unique sQTL SNPs associated with 30,333 splice sites corresponding to 6,419 unique genes. Similarly, 708,928 unique eQTL SNPs involving 15,913 genes were detected at 10% FDR. While there is overlap between sQTLs and eQTLs, 55.3% of sQTLs are not eQTLs. Co-localization analysis revealed that 7 out of 21 loci associated with COPD (p</p

    Detectable Clonal Mosaicism from Birth to Old Age and its Relationship to Cancer

    Get PDF
    Clonal mosaicism for large chromosomal anomalies (duplications, deletions and uniparental disomy) was detected using SNP microarray data from over 50,000 subjects recruited for genome-wide association studies. This detection method requires a relatively high frequency of cells (>5–10%) with the same abnormal karyotype (presumably of clonal origin) in the presence of normal cells. The frequency of detectable clonal mosaicism in peripheral blood is low (<0.5%) from birth until 50 years of age, after which it rises rapidly to 2–3% in the elderly. Many of the mosaic anomalies are characteristic of those found in hematological cancers and identify common deleted regions that pinpoint the locations of genes previously associated with hematological cancers. Although only 3% of subjects with detectable clonal mosaicism had any record of hematological cancer prior to DNA sampling, those without a prior diagnosis have an estimated 10-fold higher risk of a subsequent hematological cancer (95% confidence interval = 6–18)
    corecore