5 research outputs found

    Dendrímeros de estructura carbosilano y su uso como vectores no-virales en terapia génica y como agentes terapéuticos

    Get PDF
    El trabajo de investigación realizado en el Departamento de Química Inorgánica de la Universidad de Alcalá se puede resumir en los siguientes puntos: 1.- Se han establecido métodos de síntesis sencillos para la preparación de dendrímeros carbosilano iónicos (catiónicos y aniónicos), estables y solubles en disolución acuosa. 2.-Se ha establecido el comportamiento ácido-base de los dendrímeros aniónicos en función del pH. A pH fisiológico, ambos tipos de compuestos presentan especies diferentes en disolución, lo que puede repercutir en su comportamiento en procesos biomédicos. 3.- Los estudios biomédicos muestran que los dendrímeros carbosilano catiónicos son: a) Eficientes vehículos de transporte no-virales en procesos de terapia génica. b) Prometedores agentes terapéuticos (antibacterianos, antivirales y antipriónicos). c) Potenciales agentes de transporte de fármacos de naturaleza aniónica. 4.-Los dendrímeros carbosilano aniónicos se pueden considerar eficientes agentes antivirales frente al VIH. Sus propiedades antiinflamatorias y antibacterianas les confieren un valor añadido para su posible formulación como gel microbicida vaginal o rectal de uso tópico

    Influence of Surface Groups on Poly(propylene imine) Dendrimers Antiprion Activity

    No full text
    Prion diseases are characterized by the accumulation of PrP<sup>Sc</sup>, an aberrantly folded isoform of the host protein PrP<sup>C</sup>. Specific forms of synthetic molecules known as dendrimers are able to eliminate protease-resistant PrP<sup>Sc</sup> in both an intracellular and in vitro setting. The properties of a dendrimer which govern this ability are unknown. We addressed the issue by comparing the in vitro antiprion ability of numerous modified poly­(propylene-imine) dendrimers, which varied in size, structure, charge, and surface group composition. Several of the modified dendrimers, including an anionic glycodendrimer, reduced the level of protease resistant PrP<sup>Sc</sup> in a prion strain-dependent manner. This led to the formulation of a new working model for dendrimer/prion interactions which proposes dendrimers eliminate PrP<sup>Sc</sup> by destabilizing the protein and rendering it susceptible to proteolysis. This ability is not dependent on any particular charge of dendrimer, but does require a high density of reactive surface groups

    Influence of Surface Groups on Poly(propylene imine) Dendrimers Antiprion Activity

    No full text
    Prion diseases are characterized by the accumulation of PrP(Sc), an aberrantly folded isoform of the host protein PrP(C). Specific forms of synthetic molecules known as dendrimers are able to eliminate protease-resistant PrP(Sc) in both an intracellular and in vitro setting. The properties of a dendrimer which govern this ability are unknown. We addressed the issue by comparing the in vitro antiprion ability of numerous modified poly(propylene-imine) dendrimers, which varied in size, structure, charge, and surface group composition. Several of the modified dendrimers, including an anionic glycodendrimer, reduced the level of protease resistant PrP(Sc) in a prion strain-dependent manner. This led to the formulation of a new working model for dendrimer/prion interactions which proposes dendrimers eliminate PrP(Sc) by destabilizing the protein and rendering it susceptible to proteolysis. This ability is not dependent on any particular charge of dendrimer, but does require a high density of reactive surface groups

    Subcutaneous anti-COVID-19 hyperimmune immunoglobulin for prevention of disease in asymptomatic individuals with SARS-CoV-2 infection: a double-blind, placebo-controlled, randomised clinical trialResearch in context

    No full text
    Summary: Background: Anti-COVID-19 hyperimmune immunoglobulin (hIG) can provide standardized and controlled antibody content. Data from controlled clinical trials using hIG for the prevention or treatment of COVID-19 outpatients have not been reported. We assessed the safety and efficacy of subcutaneous anti-COVID-19 hyperimmune immunoglobulin 20% (C19-IG20%) compared to placebo in preventing development of symptomatic COVID-19 in asymptomatic individuals with SARS-CoV-2 infection. Methods: We did a multicentre, randomized, double-blind, placebo-controlled trial, in asymptomatic unvaccinated adults (≥18 years of age) with confirmed SARS-CoV-2 infection within 5 days between April 28 and December 27, 2021. Participants were randomly assigned (1:1:1) to receive a blinded subcutaneous infusion of 10 mL with 1 g or 2 g of C19-IG20%, or an equivalent volume of saline as placebo. The primary endpoint was the proportion of participants who remained asymptomatic through day 14 after infusion. Secondary endpoints included the proportion of individuals who required oxygen supplementation, any medically attended visit, hospitalisation, or ICU, and viral load reduction and viral clearance in nasopharyngeal swabs. Safety was assessed as the proportion of patients with adverse events. The trial was terminated early due to a lack of potential benefit in the target population in a planned interim analysis conducted in December 2021. ClinicalTrials.gov registry: NCT04847141. Findings: 461 individuals (mean age 39.6 years [SD 12.8]) were randomized and received the intervention within a mean of 3.1 (SD 1.27) days from a positive SARS-CoV-2 test. In the prespecified modified intention-to-treat analysis that included only participants who received a subcutaneous infusion, the primary outcome occurred in 59.9% (91/152) of participants receiving 1 g C19-IG20%, 64.7% (99/153) receiving 2 g, and 63.5% (99/156) receiving placebo (difference in proportions 1 g C19-IG20% vs. placebo, −3.6%; 95% CI -14.6% to 7.3%, p = 0.53; 2 g C19-IG20% vs placebo, 1.1%; −9.6% to 11.9%, p = 0.85). None of the secondary clinical efficacy endpoints or virological endpoints were significantly different between study groups. Adverse event rate was similar between groups, and no severe or life-threatening adverse events related to investigational product infusion were reported. Interpretation: Our findings suggested that administration of subcutaneous human hyperimmune immunoglobulin C19-IG20% to asymptomatic individuals with SARS-CoV-2 infection was safe but did not prevent development of symptomatic COVID-19. Funding: Grifols
    corecore