36 research outputs found

    Editorial: Technologies to address risk assessment, food safety and public health in food production chain

    Get PDF
    Access to sufficient, safe and nutritious food is a basic human right and is referred to as food security. To ensure this right, governments should develop and support effective and efficient prevention and control strategies along the food production chain. This should be based on integrated approach, from farm-to-fork, supported by risk assessment, risk-based food safety management and risk communication to consumers on major public health hazards. The continuous and rapid development of new technologies to detect and control food safety hazards, together with the introduction of digital innovations in the food chain, mark the 4th industrial revolution. The food chain is not exempted from these changes. In light of food security needs and current global challenges, such as population growth and urbanization, international livestock and food trade, climate change, biodiversity loss, decrease of arable land, food waste, and greenhouse gas emissions there is a strong need to transform agri-food systems. Such transformation should enable a more climate resilient and sustainable food value chain

    Tn6188 - A Novel Transposon in Listeria monocytogenes Responsible for Tolerance to Benzalkonium Chloride

    Get PDF
    peer-reviewedControlling the food-borne pathogen Listeria (L.) monocytogenes is of great importance from a food safety perspective, and thus for human health. The consequences of failures in this regard have been exemplified by recent large listeriosis outbreaks in the USA and Europe. It is thus particularly notable that tolerance to quaternary ammonium compounds such as benzalkonium chloride (BC) has been observed in many L. monocytogenes strains. However, the molecular determinants and mechanisms of BC tolerance of L. monocytogenes are still largely unknown. Here we describe Tn6188, a novel transposon in L. monocytogenes conferring tolerance to BC. Tn6188 is related to Tn554 from Staphylococcus (S.) aureus and other Tn554-like transposons such as Tn558, Tn559 and Tn5406 found in various Firmicutes. Tn6188 comprises 5117 bp, is integrated chromosomally within the radC gene and consists of three transposase genes (tnpABC) as well as genes encoding a putative transcriptional regulator and QacH, a small multidrug resistance protein family (SMR) transporter putatively associated with export of BC that shows high amino acid identity to Smr/QacC from S. aureus and to EmrE from Escherichia coli. We screened 91 L. monocytogenes strains for the presence of Tn6188 by PCR and found Tn6188 in 10 of the analyzed strains. These isolates were from food and food processing environments and predominantly from serovar 1/2a. L. monocytogenes strains harboring Tn6188 had significantly higher BC minimum inhibitory concentrations (MICs) (28.5 ± 4.7 mg/l) than strains without Tn6188 (14 ± 3.2 mg/l). Using quantitative reverse transcriptase PCR we could show a significant increase in qacH expression in the presence of BC. QacH deletion mutants were generated in two L. monocytogenes strains and growth analysis revealed that ΔqacH strains had lower BC MICs than wildtype strains. In conclusion, our results provide evidence that Tn6188 is responsible for BC tolerance in various L. monocytogenes strains.This work was supported by a grant from the Austrian Science Fund (FWF, http://www.fwf.ac.at/) to SSE (grant no. P22703‐B17), by the European Union funded integrated project BIOTRACER (contract no. 036272) under the 6th RTD framework and by the EU grant FP7‐KBBE‐2010‐4 (FOODSEG)

    Molecular Epidemiology of Invasive Listeriosis due to Listeria monocytogenes in a Spanish Hospital over a Nine-Year Study Period, 2006–2014

    Get PDF
    We investigated the pathogenicity, invasiveness, and genetic relatedness of 17 clinical Listeria monocytogenes stains isolated over a period of nine years (2006–2014). All isolates were phenotypically characterised and growth patterns were determined. The antimicrobial susceptibility of L. monocytogenes isolates was determined in E-tests. Invasion assays were performed with epithelial HeLa cells. Finally, L. monocytogenes isolates were subtyped by PFGE and MLST. All isolates had similar phenotypic characteristics (β-haemolysis and lecithinase activity), and three types of growth curve were observed. Bacterial recovery rates after invasion assays ranged from 0.09% to 7.26% (1.62 ± 0.46). MLST identified 11 sequence types (STs), and 14 PFGE profiles were obtained, indicating a high degree of genetic diversity. Genetic studies unequivocally revealed the occurrence of one outbreak of listeriosis in humans that had not previously been reported. This outbreak occurred in October 2009 and affected three patients from neighbouring towns. In conclusion, the molecular epidemiological analysis clearly revealed a cluster (three human cases, all ST1) of not previously reported listeriosis cases in northwestern Spain. Our findings indicate that molecular subtyping, in combination with epidemiological case analysis, is essential and should be implemented in routine diagnosis, to improve the tracing of the sources of outbreaks.Gerencia Regional de Salud, Junta de Castilla y Le´on, Spain, research project GRS 698/A/2011 and the EU 7th Framework Programme through the PROMISE project (Project no. 265877)

    Assessment of microbial quality in poultry drinking water on farms in Austria

    Get PDF
    The quality of poultry drinking water has a significant effect on broiler health and performance. This study conducted an analysis of aerobic mesophilic counts (AMC), Enterobacteriaceae (EB), Pseudomonadaceae (PS), and screened for the presence of Campylobacter spp. in water samples collected from a total of 14 farms in Austria, with either a public or private water source. The efficacy of two water line treatment methods was evaluated: a chemical treatment of the water lines with 4.0 ppm ClO2 (T1) and a combined chemical (4.0 ppm active ClO2 and 3.0% peracetic acid) and mechanical treatment (purging of the water lines with a high-pressure air pump; T2). However, both the T1 and T2 treatments failed to reduce the AMC counts below the maximum acceptable microbial limit of 4.0 log10 CFU/ml in water samples. In addition, no significant reduction in EB and PS counts was observed in water samples after either T1 or T2 water line treatment. The water samples showed a high level of microbial diversity with 18 to 26 different genera. The genus Pseudomonas was most frequently isolated across all poultry farms, while Campylobacter jejuni was identified in a single sample collected before water line treatment. Isolate analysis revealed the presence of opportunistic pathogens in water samples both before (T1 43.1%, T2 30.9%) and after (T1 36.3%, T2 33.3%) water line treatment. Opportunistic pathogens belonging to genera including Pseudomonas spp., Stenotrophomonas spp., and Ochrobactrum spp., were most frequently isolated from poultry drinking water. These isolates exhibited multidrug resistance and resistance phenotypes to antimicrobials commonly used in Austrian poultry farms. The findings of this study emphasize the potential risk of exposure to opportunistic pathogens for poultry and personnel, underscoring the importance of efficient water line management

    Quality and Safety of Dried Mushrooms Available at Retail Level

    No full text
    Pathogenic microorganisms surviving in dry products have regularly led to recalls and foodborne disease outbreaks. Therefore, the microbiological quality of 61 dried mushrooms samples purchased online and in supermarkets were analyzed. Counts of aerobic mesophiles (AMCs), Enterobacteriaceae (EB), yeasts and molds, presumptive Bacillus cereus (pBC), the presence of Salmonella spp., and L. monocytogenes were investigated. Isolates of pBC were screened for their partial panC gene sequences and their toxin genes’ profiles. The microbiological quality of the dried mushrooms investigated in this study was generally found to be acceptable. Average AMCs, EB, yeasts, and molds were 3.9 log, 1.1 log, 1.6 log, and 1.5 log cfu/g, respectively. All mushroom samples tested negative for Salmonella spp. and L. monocytogenes. Presumptive BC were detected in 59.0% of the samples, but the contamination level was low (1.0 to 3.4 log cfu/g). None of the isolates were positive for the ces gene. Incomplete labeling was found in 45.9% of the samples, mainly in the form of missing heating instructions (31.1%) and/or country of origin (16.3%). Contamination by pathogens can occur in dried mushrooms. Adequate information on home cooking practices is essential to reduce the risk of foodborne illness to the consumer and to provide a safe food product

    Listeria monocytogenes Isolated from Illegally Imported Food Products into the European Union Harbor Different Virulence Factor Variants

    No full text
    Unregulated international flow of foods poses a danger to human health, as it may be contaminated with pathogens. Recent studies have investigated neglected routes of pathogen transmission and reported the occurrence of Listeria monocytogenes in food illegally imported into the European Union (EU), either confiscated at four international airports or sold illegally on the Romanian black market. In this study we investigated the genotype diversity and the amino acid sequence variability of three main virulence factors of 57 L. monocytogenes isolates. These isolates were derived from 1474 food samples illegally imported into the EU and originated from 17 different countries. Multilocus sequence typing revealed 16 different sequence types (STs) indicating moderate genotype diversity. The most prevalent STs were ST2, ST9, and ST121. The pulsed-field gel electrophoresis (PFGE) analysis resulted in 34 unique pulsotypes. PFGE types assigned to the most prevalent STs (ST2, ST9, and ST121) were highly related in their genetic fingerprint. Internalin A (InlA) was present in 20 variants, including six truncated InlA variants, all harbored by isolates of ST9 and ST121. We detected eight ST-specific listeriolysin O (LLO) variants, and among them, one truncated form. The actin-assembly-inducing protein ActA was present in 15 different ST-specific variants, including four ActA variants with an internal truncation. In conclusion, this study shows that L. monocytogenes, isolated from illegally imported food, have moderate genotype diversity, but diverse virulence factors variants, mainly of InlA

    Monitoring by a Sensitive Liquid-Based Sampling Strategy Reveals a Considerable Reduction of Listeria monocytogenes in Smeared Cheese Production over 10 Years of Testing in Austria

    No full text
    Most Austrian dairies and cheese manufacturers participated in a Listeria monitoring program, which was established after the first reports of dairy product-associated listeriosis outbreaks more than thirty years ago. Within the Listeria monitoring program, up to 800 mL of product-associated liquids such as cheese smear or brine are processed in a semi-quantitative approach to increase epidemiological sensitivity. A sampling strategy within cheese production, which detects environmental contamination before it results in problematic food contamination, has benefits for food safety management. The liquid-based sampling strategy was implemented by both industrial cheese makers and small-scale dairies located in the mountainous region of Western Austria. This report considers more than 12,000 Listeria spp. examinations of liquid-based samples in the 2009 to 2018 timeframe. Overall, the occurrence of L. monocytogenes in smear liquid samples was 1.29% and 1.55% (n = 5043 and n = 7194 tested samples) for small and industrial cheese enterprises, respectively. The liquid-based sampling strategy for Listeria monitoring at the plant level appears to be superior to solid surface monitoring. Cheese smear liquids seem to have good utility as an index of the contamination of cheese up to that point in production. A modelling or validation process should be performed for the new semi-quantitative approach to estimate the true impact of the method in terms of reducing Listeria contamination at the cheese plant level
    corecore