5 research outputs found

    Evolutionary trait-based approaches for predicting future global impacts of plant pathogens in the genus Phytophthora

    Get PDF
    1. Plant pathogens are introduced to new geographical regions ever more frequently as global connectivity increases. Predicting the threat they pose to plant health can be difficult without in‐depth knowledge of behaviour, distribution and spread. Here, we evaluate the potential for using biological traits and phylogeny to predict global threats from emerging pathogens. 2. We use a species‐level trait database and phylogeny for 179 Phytophthora species: oomycete pathogens impacting natural, agricultural, horticultural and forestry settings. We compile host and distribution reports for Phytophthora species across 178 countries and evaluate the power of traits, phylogeny and time since description (reflecting species‐level knowledge) to explain and predict their international transport, maximum latitude and host breadth using Bayesian phylogenetic generalised linear mixed models. 3. In the best‐performing models, traits, phylogeny and time since description together explained up to 90%, 97% and 87% of variance in number of countries reached, latitudinal limits and host range, respectively. Traits and phylogeny together explained up to 26%, 41% and 34% of variance in the number of countries reached, maximum latitude and host plant families affected, respectively, but time since description had the strongest effect. 4. Root‐attacking species were reported in more countries, and on more host plant families than foliar‐attacking species. Host generalist pathogens had thicker‐walled resting structures (stress‐tolerant oospores) and faster growth rates at their optima. Cold‐tolerant species are reported in more countries and at higher latitudes, though more accurate interspecific empirical data are needed to confirm this finding. 5. Policy implications. We evaluate the potential of an evolutionary trait‐based framework to support horizon‐scanning approaches for identifying pathogens with greater potential for global‐scale impacts. Potential future threats from Phytophthora include Phytophthora x heterohybrida, P. lactucae, P. glovera, P. x incrassata, P. amnicola and P. aquimorbida, which are recently described, possibly under‐reported species, with similar traits and/or phylogenetic proximity to other high‐impact species. Priority traits to measure for emerging species may be thermal minima, oospore wall index and growth rate at optimum temperature. Trait‐based horizon‐scanning approaches would benefit from the development of international and cross‐sectoral collaborations to deliver centralised databases incorporating pathogen distributions, traits and phylogeny

    Starvation-induced genes of the tomato pathogen Cladosporium fulvum are also induced during growth in planta

    No full text
    The pathogenicity of fungal pathogens is presumably dependent on genes that are expressed during infection. In order to isolate such genes from the tomato pathogen Cla-dosporium fulvum, and to test the hypothesis that starvation-induced genes are also plant induced, a cDNA library was prepared from mycelia grown in a defined medium and then transferred to a starvation medium. The library was then screened with cDNA probes prepared from starved and replete fungal mycelium. Five unique, differentially expressed cDNAs were isolated from 1,000 clones screened. Northern (RNA) hybridization confirmed that all five were starvation induced. Interestingly, all five were also found to be plant induced. The identity of two of the clones was indicated by partial DNA sequencing as alcohol and aldehyde dehydrogenase. The observed correlation between starvation induction and plant induction is discussed

    Improving ITS sequence data for identification of plant pathogenic fungi

    No full text
    Plant pathogenic fungi are a large and diverse assemblage of eukaryotes with substantial impacts on natural ecosystems and human endeavours. These taxa often have complex and poorly understood life cycles, lack observable, discriminatory morphological characters, and may not be amenable to in vitro culturing. As a result, species identification is frequently difficult. Molecular (DNA sequence) data have emerged as crucial information for the taxonomic identification of plant pathogenic fungi, with the nuclear ribosomal internal transcribed spacer (ITS) region being the most popular marker. However, international nucleotide sequence databases are accumulating numerous sequences of compromised or low-resolution taxonomic annotations and substandard technical quality, making their use in the molecular identification of plant pathogenic fungi problematic. Here we report on a concerted effort to identify high-quality reference sequences for various plant pathogenic fungi and to re-annotate incorrectly or insufficiently annotated public ITS sequences from these fungal lineages. A third objective was to enrich the sequences with geographical and ecological metadata. The results – a total of 31,954 changes – are incorporated in and made available through the UNITE database for molecular identification of fungi (http://unite.ut.ee), including standalone FASTA files of sequence data for local BLAST searches, use in the next-generation sequencing analysis platforms QIIME and mothur, and related applications. The present initiative is just a beginning to cover the wide spectrum of plant pathogenic fungi, and we invite all researchers with pertinent expertise to join the annotation effort
    corecore