1,465 research outputs found

    Space-to-Ground Interactions While Conducting Scientific Fieldwork Under Mars Mission Constraints

    Get PDF
    The Biologic Analog Science Associated with Lava Terrains (BASALT) project is a 4-year program dedicated to iteratively designing, implementing, and evaluating concepts of operations (ConOps) and supporting capabilities to enable and enhance scientific exploration for future human Mars missions. BASALT incorporates three field deployments during which real (non-simulated) biological and geochemical field science is conducted at two high-fidelity Mars analog locations under simulated Mars mission conditions, including communication de-lays and data transmission limitations. BASALTs primary science objective is to investigate how the redox conditions of altered basaltic environments affect the development of microbial communities in these Mars-relevant settings. Field sites include the active East Rift Zone on the Big Island of Hawaii, reminiscent of early Mars when basaltic volcanism and interaction with water were widespread, and the dormant eastern Snake River Plain in Idaho, similar to present-day Mars where basaltic volcanism is rare and most evidence for volcano-driven hydrothermal activity is relict. BASALTs primary science operations objective is to investigate exploration ConOps and capabilities that facilitate scientific return during human-robotic exploration under Mars mission constraints. Each field deployment consists of ten extravehicular activities (EVAs) on the volcanic flows in which two extravehicular and two intravehicular (IV) crew-members conduct the science while communicating across time delay and under bandwidth constraints with an Earth-based Mission Support Center (MSC) comprised of expert scientists and operators. Communication latencies of 5 and 15-minute one-way light time and low (0.512 Mb/s uplink, 1.54 Mb/s down-link) and high (5.0 Mb/s uplink, 10.0 Mb/s downlink) bandwidth conditions are being evaluated. EVA crewmembers communicate with the MSC via voice and text messaging and provide scientific instrument data, still imagery, video streams, and GPS tracking information. The MSC reviews this data across delay and provides recommendations for presampling and sampling tasks. The scientists used dynamic leaderboards (priority rank-ing lists), to track and rank candidate samples relative to one another and against the science objectives for the current EVA and the overall mission. Updates to the dynamic leaderboards are relayed regularly to the IV crewmembers to provide scientific feedback from Earth and to help minimize crew idle time (time spent waiting for Earth input during which no productive tasks are performed). EVA timelines are strategically designed to enable continuous (delayed) feedback from an Earth-based science team while simultaneously minimizing crew idle time. Such timelines are operationally advantageous, reducing transport costs by eliminating the need for crews to return to the same locations on multiple EVAs while still providing opportunities for recommendations from science experts on Earth, and scientifically advantageous by minimizing the potential for cross-contamination across sites. This paper will highlight the space-to-ground interaction results from the three BASALT field deployments, including planned versus actual EVA time-line data, ground assimilation times (the amount of time available to the MSC to provide input to the crew), and idle time. Furthermore, we describe how these results vary under the different communication latency and bandwidth conditions. Together, these data will provide a basis for guiding and prioritizing capability development for future human exploration missions

    Intra-EVA Space-to-Ground Interactions when Conducting Scientific Fieldwork Under Simulated Mars Mission Constraints

    Get PDF
    The Biologic Analog Science Associated with Lava Terrains (BASALT) project is a four-year program dedicated to iteratively designing, implementing, and evaluating concepts of operations (ConOps) and supporting capabilities to enable and enhance scientific exploration for future human Mars missions. The BASALT project has incorporated three field deployments during which real (non-simulated) biological and geochemical field science have been conducted at two high-fidelity Mars analog locations under simulated Mars mission conditions, including communication delays and data transmission limitations. BASALT's primary Science objective has been to extract basaltic samples for the purpose of investigating how microbial communities and habitability correlate with the physical and geochemical characteristics of chemically altered basalt environments. Field sites include the active East Rift Zone on the Big Island of Hawai'i, reminiscent of early Mars when basaltic volcanism and interaction with water were widespread, and the dormant eastern Snake River Plain in Idaho, similar to present-day Mars where basaltic volcanism is rare and most evidence for volcano-driven hydrothermal activity is relict. BASALT's primary Science Operations objective has been to investigate exploration ConOps and capabilities that facilitate scientific return during human-robotic exploration under Mars mission constraints. Each field deployment has consisted of ten extravehicular activities (EVAs) on the volcanic flows in which crews of two extravehicular and two intravehicular crewmembers conducted the field science while communicating across time delay and under bandwidth constraints with an Earth-based Mission Support Center (MSC) comprised of expert scientists and operators. Communication latencies of 5 and 15 min one-way light time and low (0.512 Mb/s uplink, 1.54 Mb/s downlink) and high (5.0 Mb/s uplink, 10.0 Mb/s downlink) bandwidth conditions were evaluated. EVA crewmembers communicated with the MSC via voice and text messaging. They also provided scientific instrument data, still imagery, video streams from chest-mounted cameras, GPS location tracking information. The MSC monitored and reviewed incoming data from the field across delay and provided recommendations for pre-sampling and sampling tasks based on their collective expertise. The scientists used dynamic priority ranking lists, referred to as dynamic leaderboards, to track and rank candidate samples relative to one another and against the science objectives for the current EVA and the overall mission. Updates to the dynamic leaderboards throughout the EVA were relayed regularly to the IV crewmembers. The use of these leaderboards enabled the crew to track the dynamic nature of the MSC recommendations and helped minimize crew idle time (defined as time spent waiting for input from Earth during which no other productive tasks are being performed). EVA timelines were strategically designed to enable continuous (delayed) feedback from an Earth-based Science Team while simultaneously minimizing crew idle time. Such timelines are operationally advantageous, reducing transport costs by eliminating the need for crews to return to the same locations on multiple EVAs while still providing opportunities for recommendations from science experts on Earth, and scientifically advantageous by minimizing the potential for cross-contamination across sites. This paper will highlight the space-to-ground interaction results from the three BASALT field deployments, including planned versus actual EVA timeline data, ground assimilation times (defined as the amount of time available to the MSC to provide input to the crew), and idle time. Furthermore, we describe how these results vary under the different communication latency and bandwidth conditions. Together, these data will provide a basis for guiding and prioritizing capability development for future human exploration missions

    Development of a Ground Test and Analysis Protocol for NASA's NextSTEP Phase 2 Habitation Concepts

    Get PDF
    The NASA Next Space Technologies for Exploration Partnerships (NextSTEP) program is a public-private partnership model that seeks commercial development of deep space exploration capabilities to support human spaceflight missions around and beyond cislunar space. NASA first issued the Phase 1 NextSTEP Broad Agency Announcement to U.S. industries in 2014, which called for innovative cislunar habitation concepts that leveraged commercialization plans for low-Earth orbit. These habitats will be part of the Deep Space Gateway (DSG), the cislunar space station planned by NASA for construction in the 2020s. In 2016, Phase 2 of the NextSTEP program selected five commercial partners to develop ground prototypes. A team of NASA research engineers and subject matter experts (SMEs) have been tasked with developing the ground-test protocol that will serve as the primary means by which these Phase 2 prototypes will be evaluated. Since 2008, this core test team has successfully conducted multiple spaceflight analog mission evaluations utilizing a consistent set of operational tools, methods, and metrics to enable the iterative development, testing, analysis, and validation of evolving exploration architectures, operations concepts, and vehicle designs. The purpose of implementing a similar evaluation process for the Phase 2 Habitation Concepts is to consistently evaluate different commercial partner ground prototypes to provide data-driven, actionable recommendations for Phase 3. This paper describes the process by which the ground test protocol was developed and the objectives, methods, and metrics by which the NextSTEP Phase 2 Habitation Concepts will be rigorously and systematically evaluated. The protocol has been developed using both a top-down and bottom-up approach. Top-down development began with the Human Exploration and Operations Mission Directorate (HEOMD) exploration objectives and ISS Exploration Capability Study Team (IECST) candidate flight objectives. Strategic questions and associated rationales, derived from these candidate architectural objectives, provide the framework by which the ground-test protocol will address the DSG stack elements and configurations, systems and subsystems, and habitation, science, and EVA functions. From these strategic questions, high-level functional requirements for the DSG were drafted and associated ground-test objectives and analysis protocols were established. Bottom-up development incorporated objectives from NASA SMEs in autonomy, avionics and software, communication, environmental control and life support systems, exercise, extravehicular activity, exploration medical operations, guidance navigation and control, human factors and behavioral performance, human factors and habitability, logistics, Mission Control Center operations, power, radiation, robotics, safety and mission assurance, science, simulation, structures, thermal, trash management, and vehicle health. Top-down and bottom-up objectives were integrated to form overall functional requirements - ground-test objectives and analysis mapping. From this mapping, ground-test objectives were organized into those that will be evaluated through inspection, demonstration, analysis, subsystem standalone testing, and human-in-the-loop (HITL) testing. For the HITL tests, mission-like timelines, procedures, and flight rules have been developed to directly meet ground test objectives and evaluate specific functional requirements. Data collected from these assessments will be analyzed to determine the acceptability of habitation element configurations and the combinations of capabilities that will result in the best habitation platform to be recommended by the test team for Phase 3

    Extinction Maps Toward The Milky Way Bulge: Two-Dimensional And Three-Dimensional Tests With APOGEE

    Get PDF
    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmospheric parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.NSF Astronomy & Astrophysics Postdoctoral Fellowship AST-1203017Physics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA) PHY 08-22648U.S. National Science FoundationAlfred P. Sloan FoundationParticipating InstitutionsU.S. Department of Energy Office of Science ANR-12-BS05-0015-01Astronom

    The First Ultra-cool Brown Dwarf Discovered by the Wide-field Infrared Survey Explorer

    Get PDF
    We report the discovery of the first new ultra-cool brown dwarf (BDs) found with the Wide-field Infrared Survey Explorer (WISE). The object’s preliminary designation is WISEPC J045853.90+643451.9. Follow-up spectroscopy with the LUCIFER instrument on the Large Binocular Telescope indicates that it is a very late-type T dwarf with a spectral type approximately equal to T9. Fits to an IRTF/SpeX 0.8–2.5 μm spectrum to the model atmospheres of Marley and Saumon indicate an effective temperature of approximately 600 K as well as the presence of vertical mixing in its atmosphere. The new BD is easily detected by WISE, with a signal-to-noise ratio of ~36 at 4.6 μm. Current estimates place it at a distance of 6–10 pc. This object represents the first in what will likely be hundreds of nearby BDs found by WISE that will be suitable for follow-up observations, including those with the James Webb Space Telescope. One of the two primary scientific goals of the WISE mission is to find the coolest, closest stars to our Sun; the discovery of this new BD proves that WISE is capable of fulfilling this objective

    Integrability as a consequence of discrete holomorphicity: the Z_N model

    Full text link
    It has recently been established that imposing the condition of discrete holomorphicity on a lattice parafermionic observable leads to the critical Boltzmann weights in a number of lattice models. Remarkably, the solutions of these linear equations also solve the Yang-Baxter equations. We extend this analysis for the Z_N model by explicitly considering the condition of discrete holomorphicity on two and three adjacent rhombi. For two rhombi this leads to a quadratic equation in the Boltzmann weights and for three rhombi a cubic equation. The two-rhombus equation implies the inversion relations. The star-triangle relation follows from the three-rhombus equation. We also show that these weights are self-dual as a consequence of discrete holomorphicity.Comment: 11 pages, 7 figures, some clarifications and a reference adde

    Commit* to change? A call to end the publication of the phrase ‘commit* suicide’

    Get PDF
    Background: Countering stigma is a fundamental facet of suicide prevention efforts. Integral to this is the promotion of accurate and sensitive language. The phrase ‘commit* suicide’ has prompted marked opposition primarily due to the connotations of immorality and illegality. Methods: The study investigated the frequency of the use of the wordstem ‘commit’, in relation to self-harm and suicidal behaviours, in the three leading suicide-specific academic journals between 2000 and 2015. Results: One third (34%) of articles published since the year 2000 used the word ‘commit*’ when describing an act of self-harm or suicide. Over half of these articles (57%) used the phrase on more than one occasion, with 6% using it more than 10 times in the same manuscript. The percentage of papers utilising the word ‘commit*’ has fluctuated over time, but there is a promising downward trend in the use of this phrase from 33% in 2000 to 13% in 2015 (p < 0.001). Discussion: We advocate for the implementation of publication requirements regarding the language used when discussing suicide. Whilst we call for collective responsibility amongst academics and clinicians, editors hold a unique position in ensuring that outdated, inaccurate and stigma-laden terms are expunged from the scientific literature

    Welcome to the Twilight Zone: The Mid-Infrared Properties of Poststarburst Galaxies

    Get PDF
    We investigate the optical and Wide-field Survey Explorer (WISE) colors of "E+A" identified post-starburst galaxies, including a deep analysis on 190 post-starbursts detected in the 2{\mu}m All Sky Survey Extended Source Catalog. The post-starburst galaxies appear in both the optical green valley and the WISE Infrared Transition Zone (IRTZ). Furthermore, we find that post-starbursts occupy a distinct region [3.4]-[4.6] vs. [4.6]-[12] WISE colors, enabling the identification of this class of transitioning galaxies through the use of broad-band photometric criteria alone. We have investigated possible causes for the WISE colors of post-starbursts by constructing a composite spectral energy distribution (SED), finding that mid-infrared (4-12{\mu}m) properties of post-starbursts are consistent with either 11.3{\mu}m polycyclic aromatic hydrocarbon emission, or Thermally Pulsating Asymptotic Giant Branch (TP-AGB) and post-AGB stars. The composite SED of extended post- starburst galaxies with 22{\mu}m emission detected with signal to noise >3 requires a hot dust component to produce their observed rising mid-infrared SED between 12 and 22{\mu}m. The composite SED of WISE 22{\mu}m non-detections (S/N<3), created by stacking 22{\mu}m images, is also flat, requiring a hot dust component. The most likely source of this mid-infrared emission of these E+A galaxies is a buried active galactic nucleus. The inferred upper limit to the Eddington ratios of post-starbursts are 1e-2 to 1e-4, with an average of 1e-3. This suggests that AGNs are not radiatively dominant in these systems. This could mean that including selections able to identify active galactic nuclei as part of a search for transitioning and post-starburst galaxies would create a more complete census of the transition pathways taken as a galaxy quenches its star formation.Comment: 13 pages, 11 figures, accepted for publication in the Astrophysical Journa
    • …
    corecore