132 research outputs found

    Role of JNK in neurodegenerative diseases

    Full text link
    Podeu consultar el llibre complet a: http://hdl.handle.net/2445/32393The c-Jun N-terminal kinases (JNK) are members of the MAPK family and can be activated by different stimuli such as cellular stress, heat shock and ultra-violet irradiation. JNKs have different physiological functions and they have been linked to apoptosis in different cell types. Therefore, the JNK signalling pathway is an important target to prevent cell death. In the present chapter, the role of JNKs in neurodegenerative diseases will be discussed, as well as the pharmacological compounds that inhibit this signalling pathway as therapeutic intervention to prevent neuronal death

    Involvement of JNK1 in neuronal polarization during brain development

    Get PDF
    The c-Jun N-terminal Kinases (JNKs) are a group of regulatory elements responsible for the control of a wide array of functions within the cell. In the central nervous system (CNS), JNKs are involved in neuronal polarization, starting from the cell division of neural stem cells and ending with their final positioning when migrating and maturing. This review will focus mostly on isoform JNK1, the foremost contributor of total JNK activity in the CNS. Throughout the text, research from multiple groups will be summarized and discussed in order to describe the involvement of the JNKs in the different steps of neuronal polarization. The data presented support the idea that isoform JNK1 is highly relevant to the regulation of many of the processes that occur in neuronal development in the CNS

    GABA and Dopamine Release from Different Brain Regions in Mice with Chronic Exposure to Organophosphate Methamidophos

    Get PDF
    Organophosphates such as methamidophos, usually used in the agricultural field, have harmful effects on humans. Exposures to insecticides has been associated with many disorders, including damage to the central and peripheral nervous system. Chronic exposure to organophosphates may lead to persistent neurological and neurobehavioral effects. This study was conducted to determine the effect of methamidophos on [3H]-dopamine (DA) and gamma aminobutyric acid (GABA) release from different brain regions after chronic exposure to it for 3, 6 or 9 months. After a six-month methamidophos treatment, the mice showed high susceptibility to convulsive seizures and a reduction in stimulated gamma aminobutyric acid release from the cerebral cortex and hippocampal slices, whereas stimulated (DA) release was slightly decreased from the striatum after three months of methamidophos exposure. The results indicate changes in gamma aminobutyric acid and dopamine neurotransmission, suggesting a specific neuronal damage

    The Recombinant Human Erythropoietin Administered in Neonatal Rats After Excitotoxic Damage Induces Molecular Changes in the Hippocampus

    Get PDF
    In vitro and in vivo experimental evidence has contributed important knowledge regarding the antiapoptotic effect mediated by EPO signaling in the damaged brain, particularly through different models with a hypoxic component. However, little emphasis has been placed on the effectiveness of rhEPO administration against cellular alterations caused by in vivo excitotoxicity or on the molecular mechanism that regulates this effect. In this study, we investigated the effects of a single dose of rhEPO on hippocampal damage induced by subcutaneous application of monosodium glutamate (MSG) on postnatal days 1, 3, 5 and 7 in neonatal rats. We found that a dose of 1000 IU/kg of b.w. administered 24 h after MSG had the greatest protective effect. In addition, we analyzed changes in gene expression, particularly in 3 key molecules involved in EPO-mediated signaling (EPO, EPOR and βcR). We observed that the expression of EPO and EPOR was differentially modified at both the mRNA and protein levels under the evaluated conditions, while the expression of the βcR gene was substantially increased. Our data suggest that a low dose of rhEPO is sufficient to induce cellular protection under these experimental conditions and that the molecular changes could be a positive feedback mechanism, mediated by reactive astrocytes in association with in vivo neuroprotective mechanisms

    Dexibuprofen prevents neurodegeneration and cognitive decline in APPswe/PS1dE9 through multiple signaling pathways.

    Full text link
    The aim of the present study is to elucidate the neuronal pathways associated to NSAIDs causing a reduction of the risk and progression of Alzheimer's disease. The research was developed administering the active enantiomer of ibuprofen, dexibuprofen (DXI), in order to reduce associated gastric toxicity. DXI was administered from three to six-month-old female APPswe/PS1dE9 mice as a model of familial Alzheimer's disease. DXI treatment reduced the activation of glial cells and the cytokine release involved in the neurodegenerative process, especially TNFα. Moreover, DXI reduced soluble β-amyloid (Aβ1-42) plaque deposition by decreasing APP, BACE1 and facilitating Aβ degradation by enhancing insulin-degrading enzyme. DXI also decreased TAU hyperphosphorylation inhibiting c-Abl/CABLES/p-CDK5 activation signal pathway and prevented spatial learning and memory impairment in transgenic mice. Therefore, chronic DXI treatment could constitute a potential AD-modifying drug, both restoring cognitive functions and reversing multiple brain neuropathological hallmarks

    The Involvement of Peripheral and Brain Insulin Resistance in Late Onset Alzheimer's Dementia

    Get PDF
    Nowadays, Alzheimer's disease (AD) is a severe sociological and clinical problem. Since it was first described, there has been a constant increase in its incidence and, for now, there are no effective treatments since current approved medications have only shown short-term symptomatic benefits. Therefore, it is imperative to increase efforts in the search for molecules and non-pharmacological strategies that are capable of slowing or stopping the progress of the disease and, ideally, to reverse it. The amyloid cascade hypothesis based on the fundamental role of amyloid has been the central hypothesis in the last 30 years. However, since amyloid-directed treatments have shown no relevant beneficial results other theories have been postulated to explain the origin of the pathology. The brain is a highly metabolically active energy-consuming tissue in the human body. It has an almost complete dependence on the metabolism of glucose and uses most of its energy for synaptic transmission. Thus, alterations on the utilization or availability of glucose may be cause for the appearance of neurodegenerative pathologies like AD. In this review article, the hypothesis known as Type 3 Diabetes (T3D) will be evaluated by summarizing some of the data that has been reported in recent years. According to published research, the adherence over time to low saturated fatty acids diets in the context of the Mediterranean diet would reduce the inflammatory levels in brain, with a decrease in the pro-inflammatory glial activation and mitochondrial oxidative stress. In this situation, the insulin receptor pathway would be able to fine tune the mitochondrial biogenesis in neuronal cells, regulation the adenosine triphosphate/adenosine diphosphate intracellular balance, and becoming a key factor involved in the preservation of the synaptic connexions and neuronal plasticity. In addition, new targets and strategies for the treatment of AD will be considered in this review for their potential as new pharmacological or non-pharmacological approaches

    Benzodiazepines and Related Drugs as a Risk Factor in Alzheimer's Disease Dementia.

    Get PDF
    Benzodiazepines (BZDs) and Z-drugs are compounds widely prescribed in medical practice due to their anxiolytic, hypnotic, and muscle relaxant properties. Yet, their chronic use is associated with cases of abuse, dependence, and relapse in many patients. Furthermore, elderly people are susceptible to alterations in pharmacodynamics, pharmacokinetics as well as to drug interaction due to polypharmacy. These situations increase the risk for the appearance of cognitive affectations and the development of pathologies like Alzheimer's disease (AD). In the present work, there is a summary of some clinical studies that have evaluated the effect of BZDs and Z-drugs in the adult population with and without AD, focusing on the relationship between their use and the loss of cognitive function. Additionally, there is an assessment of preclinical studies focused on finding molecular proof on the pathways by which these drugs could be involved in AD pathogenesis. Moreover, available data (1990-2019) on BZD and Z-drug use among elderly patients, with and without AD, was compiled in this work. Finally, the relationship between the use of BZD and Z-drugs for the treatment of insomnia and the appearance of AD biomarkers was analyzed. Results pointed to a vicious circle that would worsen the condition of patients over time. Likewise, it put into relevance the need for close monitoring of those patients using BZDs that also suffer from AD. Consequently, future studies should focus on optimizing strategies for insomnia treatment in the elderly by using other substances like melatonin agonists, which is described to have a much more significant safety profile

    The Implication of the Brain Insulin Receptor in Late Onset Alzheimer's Disease Dementia

    Get PDF
    Alzheimer's disease (AD) is progressive neurodegenerative disorder characterized by brain accumulation of the amyloid β peptide (Aβ), which form senile plaques, neurofibrillary tangles (NFT) and, eventually, neurodegeneration and cognitive impairment. Interestingly, epidemiological studies have described a relationship between type 2 diabetes mellitus (T2DM) and this pathology, being one of the risk factors for the development of AD pathogenesis. Information as it is, it would point out that, impairment in insulin signalling and glucose metabolism, in central as well as peripheral systems, would be one of the reasons for the cognitive decline. Brain insulin resistance, also known as Type 3 diabetes, leads to the increase of Aβ production and TAU phosphorylation, mitochondrial dysfunction, oxidative stress, protein misfolding, and cognitive impairment, which are all hallmarks of AD. Moreover, given the complexity of interlocking mechanisms found in late onset AD (LOAD) pathogenesis, more data is being obtained. Recent evidence showed that Aβ42 generated in the brain would impact negatively on the hypothalamus, accelerating the 'peripheral' symptomatology of AD. In this situation, Aβ42 production would induce hypothalamic dysfunction that would favour peripheral hyperglycaemia due to down regulation of the liver insulin receptor. The objective of this review is to discuss the existing evidence supporting the concept that brain insulin resistance and altered glucose metabolism play an important role in pathogenesis of LOAD. Furthermore, we discuss AD treatment approaches targeting insulin signalling using anti-diabetic drugs and mTOR inhibitors

    A metabolic perspective of late onset Alzheimer's disease

    Get PDF
    After decades of research, the molecular neuropathology of Alzheimer's disease (AD) is still one of the hot topics in biomedical sciences. Some studies suggest that soluble amyloid β (Aβ) oligomers act as causative agents in the development of AD and could be initiators of its complex neurodegenerative cascade. On the other hand, there is also evidence pointing to Aβ oligomers as mere aggravators, with an arguable role in the origin of the disease. In this line of research, the relative contribution of soluble Aβ oligomers to neuronal damage associated with metabolic disorders such as Type 2 Diabetes Mellitus (T2DM) and obesity is being actively investigated. Some authors have proposed the endoplasmic reticulum (ER) stress and the induction of the unfolded protein response (UPR) as important mechanisms leading to an increase in Aβ production and the activation of neuroinflammatory processes. Following this line of thought, these mechanisms could also cause cognitive impairment. The present review summarizes the current understanding on the neuropathological role of Aβ associated with metabolic alterations induced by an obesogenic high fat diet (HFD) intake. It is believed that the combination of these two elements has a synergic effect, leading to the impairement of ER and mitochondrial functions, glial reactivity status alteration and inhibition of insulin receptor (IR) signalling. All these metabolic alterations would favour neuronal malfunction and, eventually, neuronal death by apoptosis, hence causing cognitive impairment and laying the foundations for late-onset AD (LOAD). Moreover, since drugs enhancing the activation of cerebral insulin pathway can constitute a suitable strategy for the prevention of AD, we also discuss the scope of therapeutic approaches such as intranasal administration of insulin in clinical trials with AD patients
    corecore