425 research outputs found

    Multilingualism. (John Edwards)

    Get PDF
    Sin resume

    Inactivation of Mandelate Racemase by 3-Hydroxypyruvate Reveals a Potential Mechanistic Link between Enzyme Superfamilies

    Get PDF
    Mandelate racemase (MR), a member of the enolase superfamily, catalyzes the Mg2+-dependent interconversion of the enantiomers of mandelate. Several α-keto acids are modest competitive inhibitors of MR [e.g., mesoxalate (Ki = 1.8 ± 0.3 mM) and 3-fluoropyruvate (Ki = 1.3 ± 0.1 mM)], but, surprisingly, 3-hydroxypyruvate (3-HP) is an irreversible, time-dependent inhibitor (kinact/KI = 83 ± 8 M–1 s–1). Protection from inactivation by the competitive inhibitor benzohydroxamate, trypsinolysis and electrospray ionization tandem mass spectrometry analyses, and X-ray crystallographic studies reveal that 3-HP undergoes Schiff-base formation with Lys 166 at the active site, followed by formation of an aldehyde/enol(ate) adduct. Such a reaction is unprecedented in the enolase superfamily and may be a relic of an activity possessed by a promiscuous progenitor enzyme. The ability of MR to form and deprotonate a Schiff-base intermediate furnishes a previously unrecognized mechanistic link to other α/β-barrel enzymes utilizing Schiff-base chemistry and is in accord with the sequence- and structure-based hypothesis that members of the metal-dependent enolase superfamily and the Schiff-base-forming N-acetylneuraminate lyase superfamily and aldolases share a common ancestor

    Structure of Mandelate Racemase with Bound Intermediate Analogues Benzohydroxamate and Cupferron

    Get PDF
    Mandelate racemase (MR, EC 5.1.2.2) from Pseudomonas putida catalyzes the Mg2+-dependent interconversion of the enantiomers of mandelate, stabilizing the altered substrate in the transition state by 26 kcal/mol relative to the substrate in the ground state. To understand the origins of this binding discrimination, we determined the X-ray crystal structures of wild-type MR complexed with two analogues of the putative aci-carboxylate intermediate, benzohydroxamate and Cupferron, to 2.2-Å resolution. Benzohydroxamate is shown to be a reasonable mimic of the transition state and/or intermediate because its binding affinity for 21 MR variants correlates well with changes in the free energy of transition state stabilization afforded by these variants. Both benzohydroxamate and Cupferron chelate the active site divalent metal ion and are bound in a conformation with the phenyl ring coplanar with the hydroxamate and diazeniumdiolate moieties, respectively. Structural overlays of MR complexed with benzohydroxamate, Cupferron, and the ground state analogue (S)-atrolactate reveal that the para carbon of the substrate phenyl ring moves by 0.8−1.2 Å between the ground state and intermediate state, consistent with the proposal that the phenyl ring moves during MR catalysis while the polar groups remain relatively fixed. Although the overall protein structure of MR with bound intermediate analogues is very similar to that of MR with bound (S)-atrolactate, the intermediate−Mg2+ distance becomes shorter, suggesting a tighter complex with the catalytic Mg2+. In addition, Tyr 54 moves closer to the phenyl ring of the bound intermediate analogues, contributing to an overall constriction of the active site cavity. However, site-directed mutagenesis experiments revealed that the role of Tyr 54 in MR catalysis is relatively minor, suggesting that alterations in enzyme structure that contribute to discrimination between the altered substrate in the transition state and the ground state by this proficient enzyme are extremely subtle

    PCN17: AN ANALYSIS OF RESOURCE USE IN THE TREATMENT OF ADVANCED COLORECTAL CANCER IN THE UK

    Get PDF

    Passive superresolution imaging of incoherent objects

    Full text link
    We investigate Hermite Gaussian Imaging (HGI) -- a novel passive super-resolution technique -- for complex 2D incoherent objects in the sub-Rayleigh regime. The method consists of measuring the field's spatial mode components in the image plane in the overcomplete basis of Hermite-Gaussian modes and their superpositions and subsequently using a deep neural network to reconstruct the object from these measurements. We show a three-fold resolution improvement over direct imaging. Our HGI reconstruction retains its superiority even if the same neural network is applied to improve the resolution of direct imaging. This superiority is also preserved in the presence of shot noise. Our findings are the first step towards passive super-resolution imaging protocols in fluorescent microscopy and astronomy.Comment: 6 pages, 8 figure

    Active Site-directed Inactivation of Escherichia coli Glucosamine-6-phosphate Synthase DETERMINATION OF THE FRUCTOSE 6-PHOSPHATE BINDING CONSTANT USING A CARBOHYDRATE-BASED INACTIVATOR

    Get PDF
    Glucosamine-6-phosphate synthase (GlmS) catalyzes the formation of glucosamine 6-phosphate from fructose 6-phosphate using glutamine as the ammonia source. Because N-acetylglucosamine is an essential building block of both bacterial cell walls and fungal cell wall chitin, the enzyme is a potential target for antibacterial and antifungal agents. N-Iodoacetylglucosamine 6-phosphate is an active site-directed irreversible inactivator of GlmS from Escherichia coli (kinact/KI = 17 (+/-3) m-1 s-1). Both fructose 6-phosphate and glutamine protect the enzyme from inactivation, indicating that this reagent is directed at both the sugar binding site and the glutamine binding site. Protection studies with fructose 6-phosphate demonstrate that the value of the dissociation constant for fructose 6-phosphate is 3.3 (+/-0.5) x 10(-7) m, approximately 3 orders of magnitude less than the Kia value for this substrate determined from initial velocity experiments (Badet, B., Vermoote, P., and Le Goffic, F. (1988) Biochemistry 27, 2282-2287)
    corecore