177 research outputs found

    Diphenylchloronitroethane Insecticides

    Get PDF
    Insecticidal activity of chloronitroalkanes was predicted on the basis of structure-activity relationships. Two series of new bis(substituted-phenyl) chloronitroalkanes were synthesized and evaluated for insecticidal activity. The synthetic pathway proceeded through phenylnitroethanols and diphenylnitroethanes as intermediates. Final products were 1,1-bis (substituted-phenyl)-2-chloro-2-nitroethanes and 1,1-bis(substituted-phenyl)-2,2-dichloro-2-nitroethanes. Aromatic substituents were selected from alkyl, alkoxy, and halogen moieties. Following purifications and confirmation of structures, the compounds were bioassayed against insects. The two series were compared for potency, as were various combinations of X and Y substituents. Adult female house flies (Musca domestica), mosquito larvae (Aedes aegypti), western corn rootworm (Diabrotica virgifera virgifera) and German cockroach (Blattellagermanica) have been tested. In general, the mono-chloro series is more toxic than the di-chloro series. Five of the mono-chloro analogs are 8-10 times more potent than pyrethrins and 6-7 times more toxic than methoxychlor to the house fly

    Maternal inflammation at 0.7 gestation in ewes leads to intrauterine growth restriction and impaired glucose metabolism in offspring at 30 d of age

    Get PDF
    Fetal programming associated with intrauterine growth restriction (IUGR) leads to lifelong deficits in growth and metabolic function (Hales and Barker, 2013). IUGR arises when fetuses respond to poor in utero conditions by developing adaptations that repartition nutrients to critical tissues and away from skeletal muscle (Yates et al., 2012, 2018). This fetal programming is beneficial in utero but leads to persistent reductions in muscle mass and glucose homeostasis in offspring (DeFronzo et al., 1981). Recent studies by our laboratory in sheep and rats demonstrate that maternal inflammation during gestation induces fetal inflammatory adaptations that impair growth and disrupt muscle glucose metabolism (Cadaret et al., 2017, 2018). IUGR fetal skeletal muscle exhibits indicators of enhanced inflammatory sensitivity, which could disrupt glucose uptake and oxidation (Yates et al., 2016; Cadaret et al., 2018). Enhanced inflammatory responsiveness would help explain growth and metabolic deficits observed in IUGR offspring. We hypothesize that fetal programming induced by maternal inflammation persists in offspring and contributes to impaired growth and glucose metabolism at 30 d. Therefore, the objective of this study was to determine whether sustained maternal inflammation induced by bacterial endotoxin at 0.7 gestation leads to fetal programming that contributes to deficits in growth and glucose metabolism in offspring

    Deficits in growth, muscle mass, and body composition following placental insufficiency-induced intrauterine growth restriction persisted in lambs at 60 d of age but were improved by daily clenbuterol supplementation

    Get PDF
    Low birthweight in livestock results from stress-induced intrauterine growth restriction (IUGR; Yates et al., 2018). IUGR fetuses exhibit diminished muscle growth that persists in the neonatal stage, leading to asymmetric body composition and decreased weight gain (Cadaret et al., 2019). Ultimately, low birthweight diminishes yield and carcass merit at harvest (Greenwood et al., 2000), making effective postnatal treatment strategies to improve IUGR growth outcomes necessary. In this study, we examined the benefits of injecting the β2 agonist clenbuterol daily to target adrenergic adaptations that we previously observed in IUGR muscle (Posont et al., 2018; Yates et al., 2018). We hypothesized that IUGRinduced growth deficits would persist at the juvenile stage, manifesting in inferior body composition and carcass traits. We also postulated that clenbuterol would at least partially recover growth and body symmetry. Our objective was to test this hypothesis by assessing growth metrics and body composition in IUGR-born lambs hand-reared to 60 d of age and supplemented daily with injectable clenbuterol

    Pamela: development of the RF system for a non-relativistic non-scaling FFAG

    Get PDF
    The PAMELA project(Particle Accelerator For MEdical Applications) currently consists of the design of a particle therapy facility. The project, which is in the design phase, contains Non-Scaling FFAG, particle accelerator capable of rapid beam acceleration, giving a pulse repetition rate of 1kHz, far beyond that of a conventional synchrotron. To realise the repetition rate, a key component of the accelerator is the rf accelerating system. The combination of a high energy gain per turn and a high repetition rate is a significant challenge. In this paper, options for the rf system of the proton ring and the status of development are presented

    Cryptic species and independent origins of allochronic populations within a seabird species complex (Hydrobates spp.)

    Get PDF
    Humans are inherently biased towards naming species based on morphological differences, which can lead to reproductively isolated species being mistakenly classified as one if they are morphologically similar. Recognising cryptic diversity is needed to understand drivers of speciation fully, and for accurate estimates of global biodiversity and assessments for conservation. We investigated cryptic species across the range of band-rumped storm-petrels (Hydrobates spp.): highly pelagic, nocturnal seabirds that breed on tropical and sub-tropical islands in the Atlantic and Pacific Oceans. In many breeding colonies, band-rumped storm-petrels have sympatric but temporally isolated (allochronic) populations; we sampled all breeding locations and allochronic populations. Using mitochondrial control region sequences from 754 birds, cytochrome b sequences from 69 birds, and reduced representation sequencing of the nuclear genomes of 133 birds, we uncovered high levels of genetic structuring. Population genomic analyses revealed up to seven unique clusters, and phylogenomic reconstruction showed that these represent seven monophyletic groups. We uncovered up to six independent breeding season switches across the phylogeny, spanning the continuum from genetically undifferentiated temporal populations to full allochronic species. Thus, band-rumped storm-petrels encompass multiple cryptic species, with non-geographic barriers potentially comprising strong barriers to gene flow

    Maternal inflammation at 0.7 gestation in ewes leads to intrauterine growth restriction and impaired glucose metabolism in offspring at 30 d of age

    Get PDF
    Fetal programming associated with intrauterine growth restriction (IUGR) leads to lifelong deficits in growth and metabolic function (Hales and Barker, 2013). IUGR arises when fetuses respond to poor in utero conditions by developing adaptations that repartition nutrients to critical tissues and away from skeletal muscle (Yates et al., 2012, 2018). This fetal programming is beneficial in utero but leads to persistent reductions in muscle mass and glucose homeostasis in offspring (DeFronzo et al., 1981). Recent studies by our laboratory in sheep and rats demonstrate that maternal inflammation during gestation induces fetal inflammatory adaptations that impair growth and disrupt muscle glucose metabolism (Cadaret et al., 2017, 2018). IUGR fetal skeletal muscle exhibits indicators of enhanced inflammatory sensitivity, which could disrupt glucose uptake and oxidation (Yates et al., 2016; Cadaret et al., 2018). Enhanced inflammatory responsiveness would help explain growth and metabolic deficits observed in IUGR offspring. We hypothesize that fetal programming induced by maternal inflammation persists in offspring and contributes to impaired growth and glucose metabolism at 30 d. Therefore, the objective of this study was to determine whether sustained maternal inflammation induced by bacterial endotoxin at 0.7 gestation leads to fetal programming that contributes to deficits in growth and glucose metabolism in offspring

    Multiple Francisella tularensis Subspecies and Clades, Tularemia Outbreak, Utah

    Get PDF
    In July 2007, a deer fly–associated outbreak of tularemia occurred in Utah. Human infections were caused by 2 clades (A1 and A2) of Francisella tularensis subsp. tularensis. Lagomorph carcasses from the area yielded evidence of infection with A1 and A2, as well as F. tularensis subsp. holarctica. These findings indicate that multiple subspecies and clades can cause disease in a localized outbreak of tularemia

    Financial impact of sheeppox and goatpox and estimated profitability of vaccination for subsistence farmers in selected northern states of Nigeria

    Get PDF
    Sheeppox and goatpox (SGP) are important transboundary diseases, endemic in Nigeria, causing severe clinical manifestations, impacting production, and resulting in economic losses. Vaccination is an effective control measure against SGP in endemic countries but is not currently implemented in Nigeria. This study aimed to estimate SGP financial impact and assess economic viability of SGP vaccination at the herd and regional level under different scenarios in Northern Nigeria. Integrated stochastic production and economic herd models were developed for transhumance and sedentary herds. Models were run for two disease scenarios (severely and slightly affected) and with and without vaccination, with data parameterisation from literature estimates, field survey and authors’ experience. Herd-level net financial impact of the disease and its vaccination was assessed using gross margin (GM) and partial budget analyses. These were then used to assess regional financial impact of disease and profitability of a 3-year vaccination programme using a cost-benefit analysis. The regional-analysis was performed under 0 %, 50 % and 100 % government subsidy scenarios; as a standalone programme or in combination with other existing vaccination programmes; and for risk-based and non-risk-based intervention. Median SGP losses per reproductive female were £27 (90 % CI: £31-£22), and £5 (90 % CI: £7-£3), in sedentary, and £30 (90 % CI: £41-21), and £7 (90 % CI: £10-£3), in transhumance herds, for severely and slightly affected scenarios respectively. Selling animals at a reduced price, selling fewer young animals, and reduced value of affected animals remaining in the herd were the greatest contributors to farmer’s SGP costs. SGP-affected herds realised a GM reduction of up to 121 % in sedentary and 138 % in transhumance. Median estimated regional SGP cost exceeded £24 million. Herd-level median benefits of vaccination per reproductive female were £23.76 (90 % CI: £19.28-£28.61), and £4.01 (90 % CI: £2.36-£6.31), in sedentary, and £26.85 (90 % CI: £17.99-£37.02) and £7.45 (90 % CI: £3.47-£15.14) in transhumance herds, in severely and slightly affected scenarios, respectively. Median benefit: cost ratio (BCR) for severely affected herds at 50% subsidies was 6.62 (90% CI: 5.30-8.90) for sedentary, and 5.14 (90% CI: 3.31-13.81) for transhumance herds. The regional SGP vaccination standalone programme BCR: 7–27, regional SGP vaccination with existing vaccination programme BCR: 7–228 and vaccinating high-risk areas BCR: 19–439 were found to be economically viable for all subsidy levels explored. Vaccinating low-risk areas only realised benefits with 100 % of government subsidies. This study further increases understanding of SGP’s impact within Northern Nigeria and demonstrates vaccination is an economically viable control strategy at the herd-level and also regionally, depending on the strategy and government subsidy levels considered

    The biogeochemical fate of nickel during microbial ISA degradation; implications for nuclear waste disposal

    Get PDF
    AbstractIntermediate level radioactive waste (ILW) generally contains a heterogeneous range of organic and inorganic materials, of which some are encapsulated in cement. Of particular concern are cellulosic waste items, which will chemically degrade under the conditions predicted during waste disposal, forming significant quantities of isosaccharinic acid (ISA), a strongly chelating ligand. ISA therefore has the potential to increase the mobility of a wide range of radionuclides via complex formation, including Ni-63 and Ni-59. Although ISA is known to be metabolized by anaerobic microorganisms, the biodegradation of metal-ISA complexes remains unexplored. This study investigates the fate of a Ni-ISA complex in Fe(III)-reducing enrichment cultures at neutral pH, representative of a microbial community in the subsurface. After initial sorption of Ni onto Fe(III)oxyhydroxides, microbial ISA biodegradation resulted in &gt;90% removal of the remaining Ni from solution when present at 0.1 mM, whereas higher concentrations of Ni proved toxic. The microbial consortium associated with ISA degradation was dominated by close relatives to Clostridia and Geobacter species. Nickel was preferentially immobilized with trace amounts of biogenic amorphous iron sulfides. This study highlights the potential for microbial activity to help remove chelating agents and radionuclides from the groundwater in the subsurface geosphere surrounding a geodisposal facility.</jats:p

    Heat stress and β-adrenergic agonists alter the adipose transcriptome and fatty acid mobilization in ruminant livestock

    Get PDF
    Growth and feed efficiency of cattle are improved by supplementation with the beta-adrenergic agonists (βAA), ractopamine hydrochloride (RH; β1AA) or zilpaterol hydrochloride (ZH; β2AA) (Elam et al., 2009). βAA supplementation alters adipose deposition by inhibiting fatty acid biosynthesis and promoting lipolysis of stored triacylglycerols into free fatty acids (FFAs) (Johnson et al., 2014). However, β2 adrenoceptors (βAR) desensitize with chronic activation (Re et al., 1997); supplementation is thus limited to the last 20 to 40 d of feeding. The annual economic impact of heat stress (HS) has been estimated to exceed $2.4 billion (St-Pierre et al., 2003). Heat-stressed livestock have reduced growth rates, dry matter intake, and average daily gain (Mitlöhner et al., 2001; St-Pierre et al., 2003). In response to acute stress, signaling pathways for lipolysis of circulating and stored triglycerides are activated, while chronic stress increases lipogenesis and adipogenesis (Campbell et al., 2009; Peckett et al., 2011). In cattle, HS also increases the responsiveness of adipocytes to lipolytic signals, increasing lipolysis (Faylon et al., 2015). The objective of this study was to understand how HS and βAA independently and interactively affect adipose tissue. Prior work identified minimal impact of RH on metabolic properties (Barnes et al., 2019) and on the transcriptome of skeletal muscle (Kubik et al., 2018). We therefore hypothesized that RH may be primarily affecting adipose; specifically, that lipolytic activity is increased due to heat and βAA in an additive fashion. We tested this hypothesis in RH-supplemented lambs and ZH-supplemented cattle exposed to HS for 30 and 21 d, respectively
    • …
    corecore