62 research outputs found

    Perch Selection by Male Dragonflies (Odonata, Anisoptera) Related to Competitive Ability and Species Composition

    Get PDF
    Males of many species of dragonflies (Odonata, Anisoptera) establish territories in aquatic habitats where they compete with other males for access to food and females. Territorial males typically perch on emergent vegetation and chase rival males who intrude into their territories. This dissertation research examined the role of male size in perch height selection, position on the perch, and competitive ability. Four hypotheses were tested: 1) Dragonfly species would vary by size and that territorial species would show sexual size dimorphism (SSD), 2) Perch height selection would be related to dragonfly size, 3) Position on the perch would be related to male size, with larger males selecting perch tops and smaller inferior competitors choosing the sides of perches, and 4) Intraspecific competition would be more important than interspecific competition. Research was conducted at four lakes in southeastern Virginia from 2011-2014. For size measurements, male and female dragonflies were captured and measured for total body length, abdomen length, cerci length, forewing length and width, hindwing length and width and fresh mass. For perching experiments, alternating short (30cm above waterline) and tall (90cm above waterline) bamboo perches were placed in two rows, 0.5m and 2.0m from the shore. Any dragonflies that alighted on perches were recorded for species, gender, perch position and length of occupancy. Any interactions with conspecific or heterospecific dragonflies were recorded. Results showed that dragonfly males varied significantly among species in all parameters measured, and SSD was found for some parameters for some of the species. In particular, females of several species had greater forewing and hindwing widths than males, perhaps related to selection for energy conservation in females. There was no association between dragonfly size and perch height selection. Four species frequently perched on the sides rather than the tops of perches, and these species tended to be poor competitors who lost more contests than they won. The number of intraspecific and interspecific contests did not differ for any species. Neither dragonfly size nor residency on a perch influenced contest outcomes. Overall, these results revealed that dragonfly community interactions were dynamic and did not follow simple rules

    Maternal inflammation at 0.7 gestation in ewes leads to intrauterine growth restriction and impaired glucose metabolism in offspring at 30 d of age

    Get PDF
    Fetal programming associated with intrauterine growth restriction (IUGR) leads to lifelong deficits in growth and metabolic function (Hales and Barker, 2013). IUGR arises when fetuses respond to poor in utero conditions by developing adaptations that repartition nutrients to critical tissues and away from skeletal muscle (Yates et al., 2012, 2018). This fetal programming is beneficial in utero but leads to persistent reductions in muscle mass and glucose homeostasis in offspring (DeFronzo et al., 1981). Recent studies by our laboratory in sheep and rats demonstrate that maternal inflammation during gestation induces fetal inflammatory adaptations that impair growth and disrupt muscle glucose metabolism (Cadaret et al., 2017, 2018). IUGR fetal skeletal muscle exhibits indicators of enhanced inflammatory sensitivity, which could disrupt glucose uptake and oxidation (Yates et al., 2016; Cadaret et al., 2018). Enhanced inflammatory responsiveness would help explain growth and metabolic deficits observed in IUGR offspring. We hypothesize that fetal programming induced by maternal inflammation persists in offspring and contributes to impaired growth and glucose metabolism at 30 d. Therefore, the objective of this study was to determine whether sustained maternal inflammation induced by bacterial endotoxin at 0.7 gestation leads to fetal programming that contributes to deficits in growth and glucose metabolism in offspring

    Human-Automation Allocations for Current Robotic Space Operations

    Get PDF
    Within the Human Research Program, one risk delineates the uncertainty surrounding crew working with automation and robotics in spaceflight. The Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI) is concerned with the detrimental effects on crew performance due to ineffective user interfaces, system designs and/or functional task allocation, potentially compromising mission success and safety. Risk arises because we have limited experience with complex automation and robotics. One key gap within HARI, is the gap related to functional allocation. The gap states: We need to evaluate, develop, and validate methods and guidelines for identifying human-automation/robot task information needs, function allocation, and team composition for future long duration, long distance space missions. Allocations determine the human-system performance as it identifies the functions and performance levels required by the automation/robotic system, and in turn, what work the crew is expected to perform and the necessary human performance requirements. Allocations must take into account each of the human, automation, and robotic systems capabilities and limitations. Some functions may be intuitively assigned to the human versus the robot, but to optimize efficiency and effectiveness, purposeful role assignments will be required. The role of automation and robotics will significantly change in future exploration missions, particularly as crew becomes more autonomous from ground controllers. Thus, we must understand the suitability of existing function allocation methods within NASA as well as the existing allocations established by the few robotic systems that are operational in spaceflight. In order to evaluate future methods of robotic allocations, we must first benchmark the allocations and allocation methods that have been used. We will present 1) documentation of human-automation-robotic allocations in existing, operational spaceflight systems; and 2) To gather existing lessons learned and best practices in these role assignments, from spaceflight operational experience of crew and ground teams that may be used to guide development for future systems. NASA and other space agencies have operational spaceflight experience with two key Human-Automation-Robotic (HAR) systems: heavy lift robotic arms and planetary robotic explorers. Additionally, NASA has invested in high-fidelity rover systems that can carry crew, building beyond Apollo's lunar rover. The heavy lift robotic arms reviewed are: Space Station Remote Manipulator System (SSRMS), Japanese Remote Manipulator System (JEMRMS), and the European Robotic Arm (ERA, designed but not deployed in space). The robotic rover systems reviewed are: Mars Exploration Rovers, Mars Science Laboratory rover, and the high-fidelity K10 rovers. Much of the design and operational feedback for these systems have been communicated to flight controllers and robotic design teams. As part of the mitigating the HARI risk for future human spaceflight operations, we must document function allocations between robots and humans that have worked well in practice

    Deficits in growth, muscle mass, and body composition following placental insufficiency-induced intrauterine growth restriction persisted in lambs at 60 d of age but were improved by daily clenbuterol supplementation

    Get PDF
    Low birthweight in livestock results from stress-induced intrauterine growth restriction (IUGR; Yates et al., 2018). IUGR fetuses exhibit diminished muscle growth that persists in the neonatal stage, leading to asymmetric body composition and decreased weight gain (Cadaret et al., 2019). Ultimately, low birthweight diminishes yield and carcass merit at harvest (Greenwood et al., 2000), making effective postnatal treatment strategies to improve IUGR growth outcomes necessary. In this study, we examined the benefits of injecting the β2 agonist clenbuterol daily to target adrenergic adaptations that we previously observed in IUGR muscle (Posont et al., 2018; Yates et al., 2018). We hypothesized that IUGRinduced growth deficits would persist at the juvenile stage, manifesting in inferior body composition and carcass traits. We also postulated that clenbuterol would at least partially recover growth and body symmetry. Our objective was to test this hypothesis by assessing growth metrics and body composition in IUGR-born lambs hand-reared to 60 d of age and supplemented daily with injectable clenbuterol

    Maternal inflammation at 0.7 gestation in ewes leads to intrauterine growth restriction and impaired glucose metabolism in offspring at 30 d of age

    Get PDF
    Fetal programming associated with intrauterine growth restriction (IUGR) leads to lifelong deficits in growth and metabolic function (Hales and Barker, 2013). IUGR arises when fetuses respond to poor in utero conditions by developing adaptations that repartition nutrients to critical tissues and away from skeletal muscle (Yates et al., 2012, 2018). This fetal programming is beneficial in utero but leads to persistent reductions in muscle mass and glucose homeostasis in offspring (DeFronzo et al., 1981). Recent studies by our laboratory in sheep and rats demonstrate that maternal inflammation during gestation induces fetal inflammatory adaptations that impair growth and disrupt muscle glucose metabolism (Cadaret et al., 2017, 2018). IUGR fetal skeletal muscle exhibits indicators of enhanced inflammatory sensitivity, which could disrupt glucose uptake and oxidation (Yates et al., 2016; Cadaret et al., 2018). Enhanced inflammatory responsiveness would help explain growth and metabolic deficits observed in IUGR offspring. We hypothesize that fetal programming induced by maternal inflammation persists in offspring and contributes to impaired growth and glucose metabolism at 30 d. Therefore, the objective of this study was to determine whether sustained maternal inflammation induced by bacterial endotoxin at 0.7 gestation leads to fetal programming that contributes to deficits in growth and glucose metabolism in offspring

    Heat stress and β-adrenergic agonists alter the adipose transcriptome and fatty acid mobilization in ruminant livestock

    Get PDF
    Growth and feed efficiency of cattle are improved by supplementation with the beta-adrenergic agonists (βAA), ractopamine hydrochloride (RH; β1AA) or zilpaterol hydrochloride (ZH; β2AA) (Elam et al., 2009). βAA supplementation alters adipose deposition by inhibiting fatty acid biosynthesis and promoting lipolysis of stored triacylglycerols into free fatty acids (FFAs) (Johnson et al., 2014). However, β2 adrenoceptors (βAR) desensitize with chronic activation (Re et al., 1997); supplementation is thus limited to the last 20 to 40 d of feeding. The annual economic impact of heat stress (HS) has been estimated to exceed $2.4 billion (St-Pierre et al., 2003). Heat-stressed livestock have reduced growth rates, dry matter intake, and average daily gain (Mitlöhner et al., 2001; St-Pierre et al., 2003). In response to acute stress, signaling pathways for lipolysis of circulating and stored triglycerides are activated, while chronic stress increases lipogenesis and adipogenesis (Campbell et al., 2009; Peckett et al., 2011). In cattle, HS also increases the responsiveness of adipocytes to lipolytic signals, increasing lipolysis (Faylon et al., 2015). The objective of this study was to understand how HS and βAA independently and interactively affect adipose tissue. Prior work identified minimal impact of RH on metabolic properties (Barnes et al., 2019) and on the transcriptome of skeletal muscle (Kubik et al., 2018). We therefore hypothesized that RH may be primarily affecting adipose; specifically, that lipolytic activity is increased due to heat and βAA in an additive fashion. We tested this hypothesis in RH-supplemented lambs and ZH-supplemented cattle exposed to HS for 30 and 21 d, respectively

    An Ultrafast Switchable Terahertz Polarization Modulator Based on III-V Semiconductor Nanowires

    Get PDF
    Progress in the terahertz (THz) region of the electromagnetic spectrum is undergoing major advances, with advanced THz sources and detectors being developed at a rapid pace. Yet, ultrafast THz communication is still to be realized, owing to the lack of practical and effective THz modulators. Here, we present a novel ultrafast active THz polarization modulator based on GaAs semiconductor nanowires arranged in a wire-grid configuration. We utilize an optical pump-terahertz probe spectroscopy system and vary the polarization of the optical pump beam to demonstrate ultrafast THz modulation with a switching time of less than 5 ps and a modulation depth of -8 dB. We achieve an extinction of over 13% and a dynamic range of -9 dB, comparable to microsecond-switchable graphene- and metamaterial-based THz modulators, and surpassing the performance of optically switchable carbon nanotube THz polarizers. We show a broad bandwidth for THz modulation between 0.1 and 4 THz. Thus, this work presents the first THz modulator which combines not only a large modulation depth but also a broad bandwidth and picosecond time resolution for THz intensity and phase modulation, making it an ideal candidate for ultrafast THz communication.The authors thank the EPSRC (U.K.) and Australian Research Council for financial support. H.J.J. thanks the Royal Commission for the Exhibition of 1851 for her research fellowship. The Australian National Fabrication Facility (ACT node) is acknowledged for access to the growth facility used in this work

    Daily injection of the β2 adrenergic agonist clenbuterol improved poor muscle growth and body composition in lambs following heat stress-induced intrauterine growth restriction

    Get PDF
    Background: Intrauterine growth restriction (IUGR) is associated with reduced β2 adrenergic sensitivity, which contributes to poor postnatal muscle growth. The objective of this study was to determine if stimulating β2 adrenergic activity postnatal would rescue deficits in muscle growth, body composition, and indicators of metabolic homeostasis in IUGR offspring.Methods: Time-mated ewes were housed at 40°C from day 40 to 95 of gestation to produce IUGR lambs. From birth, IUGR lambs received daily IM injections of 0.8 μg/kg clenbuterol HCl (IUGR+CLEN; n = 11) or saline placebo (IUGR; n = 12). Placebo-injected controls (n = 13) were born to pair-fed thermoneutral ewes. Biometrics were assessed weekly and body composition was estimated by ultrasound and bioelectrical impedance analysis (BIA). Lambs were necropsied at 60 days of age.Results: Bodyweights were lighter (p ≤ 0.05) for IUGR and IUGR+CLEN lambs than for controls at birth, day 30, and day 60. Average daily gain was less (p ≤ 0.05) for IUGR lambs than controls and was intermediate for IUGR+CLEN lambs. At day 58, BIA-estimated whole-body fat-free mass and ultrasound-estimated loin eye area were less (p ≤ 0.05) for IUGR but not IUGR+CLEN lambs than for controls. At necropsy, loin eye area and flexor digitorum superficialis muscles were smaller (p ≤ 0.05) for IUGR but not IUGR+CLEN lambs than for controls. Longissimus dorsi protein content was less (p ≤ 0.05) and fat-to-protein ratio was greater (p ≤ 0.05) for IUGR but not IUGR+CLEN lambs than for controls. Semitendinosus from IUGR lambs had less (p ≤ 0.05) β2 adrenoreceptor content, fewer (p ≤ 0.05) proliferating myoblasts, tended to have fewer (p = 0.08) differentiated myoblasts, and had smaller (p ≤ 0.05) muscle fibers than controls. Proliferating myoblasts and fiber size were recovered (p ≤ 0.05) in IUGR+CLEN lambs compared to IUGR lambs, but β2 adrenoreceptor content and differentiated myoblasts were not recovered. Semitendinosus lipid droplets were smaller (p ≤ 0.05) in size for IUGR lambs than for controls and were further reduced (p ≤ 0.05) in size for IUGR+CLEN lambs.Conclusion: These findings show that clenbuterol improved IUGR deficits in muscle growth and some metabolic parameters even without recovering the deficit in β2 adrenoreceptor content. We conclude that IUGR muscle remained responsive to β2 adrenergic stimulation postnatal, which may be a strategic target for improving muscle growth and body composition in IUGR-born offspring

    TOI-2015b: A Warm Neptune with Transit Timing Variations Orbiting an Active mid M Dwarf

    Full text link
    We report the discovery of a close-in (Porb=3.349daysP_{\mathrm{orb}} = 3.349\:\mathrm{days}) warm Neptune with clear transit timing variations (TTVs) orbiting the nearby (d=47.3pcd=47.3\:\mathrm{pc}) active M4 star, TOI-2015. We characterize the planet's properties using TESS photometry, precise near-infrared radial velocities (RV) with the Habitable-zone Planet Finder (HP) Spectrograph, ground-based photometry, and high-contrast imaging. A joint photometry and RV fit yields a radius Rp = 3.370.20+0.15RR_p~=~3.37_{-0.20}^{+0.15} \:\mathrm{R_\oplus}, mass mp = 16.44.1+4.1Mm_p~=~16.4_{-4.1}^{+4.1}\:\mathrm{M_\oplus}, and density ρp = 2.320.37+0.38gcm3\rho_p~=~2.32_{-0.37}^{+0.38} \:\mathrm{g cm^{-3}} for TOI-2015b, suggesting a likely volatile-rich planet. The young, active host star has a rotation period of Prot = 8.7± 0.9 daysP_{\mathrm{rot}}~=~8.7 \pm~0.9~\mathrm{days} and associated rotation-based age estimate of 1.1 ± 0.1Gyr1.1~\pm~0.1\:\mathrm{Gyr}. Though no other transiting planets are seen in the TESS data, the system shows clear TTVs of super period Psup  430daysP_{\mathrm{sup}}~\approx~430\:\mathrm{days} and amplitude \sim100minutes100\:\mathrm{minutes}. After considering multiple likely period ratio models, we show an outer planet candidate near a 2:1 resonance can explain the observed TTVs while offering a dynamically stable solution. However, other possible two-planet solutions -- including 3:2 and 4:3 resonance -- cannot be conclusively excluded without further observations. Assuming a 2:1 resonance in the joint TTV-RV modeling suggests a mass of mb = 13.34.5+4.7Mm_b~=~13.3_{-4.5}^{+4.7}\:\mathrm{M_\oplus} for TOI-2015b and mc = 6.82.3+3.5Mm_c~=~6.8_{-2.3}^{+3.5}\:\mathrm{M_\oplus} for the outer candidate. Additional transit and RV observations will be beneficial to explicitly identify the resonance and further characterize the properties of the system.Comment: 28 pages, 15 figures, 6 tables. As submitted to AAS Journal

    TOI-3984 A b and TOI-5293 A b: two temperate gas giants transiting mid-M dwarfs in wide binary systems

    Full text link
    We confirm the planetary nature of two gas giants discovered by TESS to transit M dwarfs with stellar companions at wide separations. TOI-3984 A (J=11.93J=11.93) is an M4 dwarf hosting a short-period (4.353326±0.0000054.353326 \pm 0.000005 days) gas giant (Mp=0.14±0.03 MJM_p=0.14\pm0.03~\mathrm{M_{J}} and Rp=0.71±0.02 RJR_p=0.71\pm0.02~\mathrm{R_{J}}) with a wide separation white dwarf companion. TOI-5293 A (J=12.47J=12.47) is an M3 dwarf hosting a short-period (2.930289±0.0000042.930289 \pm 0.000004 days) gas giant (Mp=0.54±0.07 MJM_p=0.54\pm0.07~\mathrm{M_{J}} and Rp=1.06±0.04 RJR_p=1.06\pm0.04~\mathrm{R_{J}}) with a wide separation M dwarf companion. We characterize both systems using a combination of ground-based and space-based photometry, speckle imaging, and high-precision radial velocities from the Habitable-zone Planet Finder and NEID spectrographs. TOI-3984 A b (Teq=563±15T_{eq}=563\pm15 K and TSM=13827+29\mathrm{TSM}=138_{-27}^{+29}) and TOI-5293 A b (Teq=67530+42T_{eq}=675_{-30}^{+42} K and TSM=92±14\mathrm{TSM}=92\pm14) are two of the coolest gas giants among the population of hot Jupiter-sized gas planets orbiting M dwarfs and are favorable targets for atmospheric characterization of temperate gas giants and three-dimensional obliquity measurements to probe system architecture and migration scenarios.Comment: Submitted to AJ, 42 pages, 14 figures. arXiv admin note: substantial text overlap with arXiv:2201.0996
    corecore