1,789 research outputs found
Deuteron Compton Scattering in Chiral Perturbation Theory
Compton scattering on the deuteron is studied in the framework of baryon
chiral perturbation theory to third order in small momenta, for photon energies
of order the pion mass. The scattering amplitude is a sum of one- and
two-nucleon mechanisms with no undetermined parameters. Our results are in good
agreement with the intermediate energy experimental data, and a comparison is
made with the recent higher-energy data obtained at SAL.Comment: 4 pages, uses sprocl.sty, 5 eps figure
The Heavy Quark Spin Symmetry Partners of the X(3872)
We explore the consequences of heavy quark spin symmetry for the charmed
meson-antimeson system in a contact-range (or pionless) effective field theory.
As a trivial consequence, we theorize the existence of a heavy quark spin
symmetry partner of the X(3872), with , which we call X(4012) in
reference to its predicted mass. If we additionally assume that the X(3915) is
a heavy spin symmetry partner of the X(3872), we end up predicting a
total of six molecular states. We also discuss the error
induced by higher order effects such as finite heavy quark mass corrections,
pion exchanges and coupled channels, allowing us to estimate the expected
theoretical uncertainties in the position of these new states.Comment: 18 pages; final version accepted for publicatio
On the modification of the Efimov spectrum in a finite cubic box
Three particles with large scattering length display a universal spectrum of
three-body bound states called "Efimov trimers''. We calculate the modification
of the Efimov trimers of three identical bosons in a finite cubic box and
compute the dependence of their energies on the box size using effective field
theory. Previous calculations for positive scattering length that were
perturbative in the finite volume energy shift are extended to arbitrarily
large shifts and negative scattering lengths. The renormalization of the
effective field theory in the finite volume is explicitly verified. Moreover,
we investigate the effects of partial wave mixing and study the behavior of
shallow trimers near the dimer energy. Finally, we provide numerical evidence
for universal scaling of the finite volume corrections.Comment: 21 pages, 8 figures, published versio
Nuclear Physics from lattice QCD at strong coupling
We study numerically the strong coupling limit of lattice QCD with one flavor
of massless staggered quarks. We determine the complete phase diagram as a
function of temperature and chemical potential, including a tricritical point.
We clarify the nature of the low temperature dense phase, which is strongly
bound nuclear matter. This strong binding is explained by the nuclear
potential, which we measure. Finally, we determine, from this first-principle
limiting case of QCD, the masses of atomic nuclei up to A=12 "carbon".Comment: 4 pages, 5 figures; v2: references added, minor changes, published
versio
Power Counting and Perturbative One Pion Exchange in Heavy Meson Molecules
We discuss the possible power counting schemes that can be applied in the
effective field theory description of heavy meson molecules, such as the
X(3872) or the recently discovered Zb(10610) and Zb(10650) states. We argue
that the effect of coupled channels is suppressed by at least two orders in the
effective field theory expansion, meaning that they can be safely ignored at
lowest order. The role of the one pion exchange potential between the heavy
mesons, and in particular the tensor force, is also analyzed. By using
techniques developed in atomic physics for handling power-law singular
potentials, which have been also successfully employed in nuclear physics, we
determine the range of center-of-mass momenta for which the tensor piece of the
one pion exchange potential is perturbative. In this momentum range, the one
pion exchange potential can be considered a subleading order correction,
leaving at lowest order a very simple effective field theory consisting only on
contact-range interactions.Comment: 21 pages, 1 figur
Massive quark effects in two flavor color superconductors
The high density effective theory formalism (HDET) is employed to describe
high density QCD with two massive flavors (2SC). The gap equation is derived
and explicitly solved for the gap parameter. The parameters associated to the
pseudo Nambu-Goldstone boson of are evaluated in the limit
and fixed. In particular we find for the velocity of the
NG boson the relation
.Comment: Latex file. 14 pages, 2 figures. Some improvement in the
presentation. 2 references added. Final version to be published in Physics
Letter
Effective field theory of the deuteron with dibaryon field
Pionless effective field theory with dibaryon fields is reexamined for
observables involving the deuteron. The electromagnetic form factors of the
deuteron and the total cross sections of radiative neutron capture on the
proton, , are calculated. The low energy constants of
vector(photon)-dibaryon-dibaryon vertices in the effective lagrangian are fixed
primarily by the one-body vector(photon)-nucleon-nucleon interactions. This
scheme for fixing the values of the low energy constants satisfactorily
reproduces the results of the effective range theory. We also show that, by
including higher order corrections, one can obtain results that are close to
those of Argonne v18 potential model.Comment: 25 pages and 11 figures; 16 references added, Figure 6 and 7
replotted, text revised a lot. To be published in Phys. Rev.
Chiral Dynamics of Low-Energy Kaon-Baryon Interactions with Explicit Resonance
The processes involving low energy and interactions (where
or ) are studied in the framework of heavy baryon chiral
perturbation theory with the (1405) resonance appearing as an
independent field.
The leading and next-to-leading terms in the chiral expansion are taken into
account. We show that an approach which explicitly includes the (1405)
resonance as an elementary quantum field gives reasonable descriptions of both
the threshold branching ratios and the energy dependence of total cross
sections.Comment: 16 pages, 6 figure
Renormalization of the Deuteron with One Pion Exchange
We analyze the deuteron bound state through the One Pion Exchange Potential.
We pay attention to the short distance peculiar singularity structure of the
bound state wave functions in coordinate space and the elimination of short
distance ambiguities by selecting the regular solution at the origin. We
determine the so far elusive amplitude of the converging exponential solutions
at the origin. All bound state deuteron properties can then be uniquely deduced
from the deuteron binding energy, the pion-nucleon coupling constant and pion
mass. This generates correlations among deuteron properties. Scattering phase
shifts and low energy parameters in the 3S1-3D1 channel are constructed by
requiring orthogonality of the positive energy states to the deuteron bound
state, yielding an energy independent combination of boundary conditions. We
also analyze from the viewpoint of short distance boundary conditions the weak
binding regime on the light of long distance perturbation theory and discuss
the approach to the chiral limit.Comment: 22 pages, 11 figure
Low Energy Constants from High Energy Theorems
New constraints on resonance saturation in chiral perturbation theory are
investigated. These constraints arise because each consistent saturation scheme
must map to a representation of the full QCD chiral symmetry group. The
low-energy constants of chiral perturbation theory are then related by a set of
mixing angles. It is shown that vector meson dominance is a consequence of the
fact that nature has chosen the lowest-dimensional nontrivial chiral
representation. It is further shown that chiral symmetry places an upper bound
on the mass of the lightest scalar in the hadron spectrum.Comment: 11 pages TeX and mtexsis.te
- …
