5,470 research outputs found

    Bicycle Safety Supplement to Teacher Buggy Driving Safety Curriculum

    Get PDF
    PDF pages:

    Vortices in small superconducting disks

    Full text link
    We study the Ginzburg-Landau equations in order to describe a two-dimensional superconductor in a bounded domain. Using the properties of a particular integrability point (κ=1/2\kappa = 1/ \sqrt2) of these nonlinear equations which allows vortex solutions, we obtain a closed expression for the energy of the superconductor. The presence of the boundary provides a selection mechanism for the number of vortices. A perturbation analysis around κ=1/2\kappa = 1/ \sqrt2 enables us to include the effects of the vortex interactions and to describe quantitatively the magnetization curves recently measured on small superconducting disks. We also calculate the optimal vortex configuration and obtain an expression for the confining potential away from the London limit.Comment: 4 pages, to be published in Physica C (Superconductivity

    Bicycle Safety Supplement to Student Buggy Driving Safety Curriculum

    Get PDF
    PDF pages:

    Pedestrian Safety Supplement to Student Buggy Driving Safety Curriculum

    Get PDF
    PDF pages:

    A High-Resolution Atlas of Uranium-Neon in the H Band

    Full text link
    We present a high-resolution (R ~ 50 000) atlas of a uranium-neon (U/Ne) hollow-cathode spectrum in the H-band (1454 nm to 1638 nm) for the calibration of near-infrared spectrographs. We obtained this U/Ne spectrum simultaneously with a laser-frequency comb spectrum, which we used to provide a first-order calibration to the U/Ne spectrum. We then calibrated the U/Ne spectrum using the recently-published uranium line list of Redman et al. (2011), which is derived from high-resolution Fourier transform spectrometer measurements. These two independent calibrations allowed us to easily identify emission lines in the hollow cathode lamp that do not correspond to known (classified) lines of either uranium or neon, and to compare the achievable precision of each source. Our frequency comb precision was limited by modal noise and detector effects, while the U/Ne precision was limited primarily by the signal-to-noise ratio (S/N) of the observed emission lines and our ability to model blended lines. The standard deviation in the dispersion solution residuals from the S/N-limited U/Ne hollow cathode lamp were 50% larger than the standard deviation of the dispersion solution residuals from the modal-noise-limited laser frequency comb. We advocate the use of U/Ne lamps for precision calibration of near-infrared spectrographs, and this H-band atlas makes these lamps significantly easier to use for wavelength calibration.Comment: 23 pages, 7 figures, submitted and accepted in ApJSS. Online-only material to be published online by ApJS

    Conditions for the discovery of solution horizons

    Full text link
    We present necessary and sufficient conditions for discrete infinite horizon optimization problems with unique solutions to be solvable. These problems can be equivalently viewed as the task of finding a shortest path in an infinite directed network. We provide general forward algorithms with stopping rules for their solution. The key condition required is that of weak reachability, which roughly requires that for any sequence of nodes or states, it must be possible from optimal states to reach states close in cost to states along this sequence. Moreover the costs to reach these states must converge to zero. Applications are considered in optimal search, undiscounted Markov decision processes, and deterministic infinite horizon optimization.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47927/1/10107_2005_Article_BF01581244.pd

    The Infrared Spectrum of Uranium Hollow Cathode Lamps from 850 nm to 4000 nm: Wavenumbers and Line Identifications from Fourier Transform Spectra

    Full text link
    We provide new measurements of wavenumbers and line identifications of 10 100 UI and UII near-infrared (NIR) emission lines between 2500 cm-1 and 12 000 cm-1 (4000 nm to 850 nm) using archival FTS spectra from the National Solar Observatory (NSO). This line list includes isolated uranium lines in the Y, J, H, K, and L bands (0.9 {\mu}m to 1.1 {\mu}m, 1.2 {\mu}m to 1.35 {\mu}m, 1.5 {\mu}m to 1.65 {\mu}m, 2.0 {\mu}m to 2.4 {\mu}m, and 3.0 {\mu}m to 4.0 {\mu}m, respectively), and provides six times as many calibration lines as thorium in the NIR spectral range. The line lists we provide enable inexpensive, commercially-available uranium hollow-cathode lamps to be used for high-precision wavelength calibration of existing and future high-resolution NIR spectrographs.Comment: 23 pages, 6 Figure

    Inflation with a constant ratio of scalar and tensor perturbation amplitudes

    Get PDF
    The single scalar field inflationary models that lead to scalar and tensor perturbation spectra with amplitudes varying in direct proportion to one another are reconstructed by solving the Stewart-Lyth inverse problem to next-to-leading order in the slow-roll approximation. The potentials asymptote at high energies to an exponential form, corresponding to power law inflation, but diverge from this model at low energies, indicating that power law inflation is a repellor in this case. This feature implies that a fine-tuning of initial conditions is required if such models are to reproduce the observations. The required initial conditions might be set through the eternal inflation mechanism. If this is the case, it will imply that the spectral indices must be nearly constant, making the underlying model observationally indistinguishable from power law inflation.Comment: 20 pages, 7 figures. Major changes to the Introduction following referee's comments. One figure added. Some other minor changes. No conclusion was modifie
    corecore