1,608 research outputs found
Low frequency elastic measurements on solid He in Vycor using a torsional oscillator
Torsional oscillator experiments involving solid He confined in the
nanoscale pores of Vycor glass showed anomalous frequency changes at
temperatures below 200 mK. These were initially attributed to decoupling of
some of the helium's mass from the oscillator, the expected signature of a
supersolid. However, these and similar anomalous effects seen with bulk
He now appear to be artifacts arising from large shear modulus changes
when mobile dislocations are pinned by He impurities. We have used a
torsional oscillator (TO) technique to directly measure the shear modulus of
the solid He/Vycor system at a frequency (1.2 kHz) comparable to that
used in previous TO experiments. The shear modulus increases gradually as the
TO is cooled from 1 K to 20 mK. We attribute the gradual modulus change to the
freezing out of thermally activated relaxation processes in the solid helium.
The absence of rapid changes below 200 mK is expected since mobile dislocations
could not exist in pores as small as those of Vycor. Our results support the
interpretation of a recent torsional oscillator experiment that showed no
anomaly when elastic effects in bulk helium were eliminated by ensuring that
there were no gaps around the Vycor sample.Comment: Accepted by Journal of Low Temperature Physic
Dislocation networks in helium-4 crystals
The mechanical behavior of crystals is dominated by dislocation networks,
their structure and their interactions with impurities or thermal phonons.
However, in classical crystals, networks are usually random with impurities
often forming non-equilibrium clusters when their motion freezes at low
temperature. Helium provides unique advantages for the study of dislocations:
crystals are free of all but isotopic impurities, the concentration of these
can be reduced to the ppb level, and the impurities are mobile at all
temperatures and therefore remain in equilibrium with the dislocations. We have
achieved a comprehensive study of the mechanical response of 4He crystals to a
driving strain as a function of temperature, frequency and strain amplitude.
The quality of our fits to the complete set of data strongly supports our
assumption of string-like vibrating dislocations. It leads to a precise
determination of the distribution of dislocation network lengths and to
detailed information about the interaction between dislocations and both
thermal phonons and 3He impurities. The width of the dissipation peak
associated with impurity binding is larger than predicted by a simple Debye
model, and much of this broadening is due to the distribution of network
lengths.Comment: accepted by Phys. Rev.
Critical Habitat and the Conservation Ecology of the Freshwater Parasitic Lamprey, Lampetra macrostoma
Lampetra macrostoma, the Cowichan Lamprey, is a freshwater parasitic lamprey that probably evolved from L. tridentata within the last 10 000 years. It is unique to the Cowichan Lake watershed on Vancouver Island, British Columbia, Canada. Larval rearing in Mesachie and Cowichan lakes occurs in shallow, silt-covered gravel areas at the mouths of rivers and streams flowing into the lakes. Spawning occurs over a protracted period from early May until about late July. Shallow areas with small gravel along the shore of the lakes, near the mouths of rivers are essential for successful spawning. Adults prey on a variety of salmonid species within the lake. There has been considerable development around Mesachie Lake and reported increased fishing pressure on prey in Mesachie and Cowichan lakes. It is not known if the size of the population of L. macrostoma has changed since an initial study in the early 1980s, but a study in 2008 captured very few spawning lamprey in Mesachie Lake, possibly indicating that the population is declining
Deformation of Silica Aerogel During Fluid Adsorption
Aerogels are very compliant materials - even small stresses can lead to large
deformations. In this paper we present measurements of the linear deformation
of high porosity aerogels during adsorption of low surface tension fluids,
performed using a Linear Variable Differential Transformer (LVDT). We show that
the degree of deformation of the aerogel during capillary condensation scales
with the surface tension, and extract the bulk modulus of the gel from the
data. Furthermore we suggest limits on safe temperatures for filling and
emptying low density aerogels with helium.Comment: 8 pages, 5 figures, submitted to PR
Wind tunnel investigation of an oblique wing transport model at mach numbers between 0.6 and 1.4
Models of three practical oblique-wing transport configurations were tested in the NASA Ames 11 foot wind tunnel. The three configurations used a common forward fuselage, wing, and support system but employed different aft fuselage sections simulating alternate propulsion system installations. These included an integrated propulsion system, pylon-mounted nacelles, and clean (no propulsion system) configuration. The tests were conducted over a Mach number range from 0.6 to 1.4 and at sweep angles from 0 to 60 degrees. The nominal unit Reynolds number was 1.83 million per meter and the angle of attack range was -3 to +6 degrees. The models were mounted in the tunnel by means of a lower blade support system. The interference effects of this lower blade and the flow inclination were determined by using an image blade system and testing the configuration in both the upright and inverted positions
The Murdoch-Godfrey Letters of 1869: A Nova Scotia - Maine Historical Correspondence
An introduction, source notes, and transcription of three letters from Beamis Murdoch in Halifax, Nova Scotia, to John Edward Godfrey in Bangor, Maine, February 8 to 27, 1869
Knowledge discovery for friction stir welding via data driven approaches: Part 2 – multiobjective modelling using fuzzy rule based systems
In this final part of this extensive study, a new systematic data-driven fuzzy modelling approach has been developed, taking into account both the modelling accuracy and its interpretability (transparency) as attributes. For the first time, a data-driven modelling framework has been proposed designed and implemented in order to model the intricate FSW behaviours relating to AA5083 aluminium alloy, consisting of the grain size, mechanical properties, as well as internal process properties. As a result, ‘Pareto-optimal’ predictive models have been successfully elicited which, through validations on real data for the aluminium alloy AA5083, have been shown to be accurate, transparent and generic despite the conservative number of data points used for model training and testing. Compared with analytically based methods, the proposed data-driven modelling approach provides a more effective way to construct prediction models for FSW when there is an apparent lack of fundamental process knowledge
- …