265 research outputs found
Conserved role for 14-3-3ϵ downstream of type I TGFβ receptors
AbstractSchistosoma mansoni receptor kinase-1 (SmRK1) is a divergent type I transforming growth factor β (TGFβ) receptor on the surface of adult parasites. Using the intracellular domain of SmRK1 as bait in a yeast two-hybrid screen we identified an interaction with S. mansoni 14-3-3ϵ. The interaction which is phosphorylation-dependent is not specific to schistosomes since 14-3-3ϵ also binds to TβRI, the human type I TGFβ receptor. 14-3-3ϵ enhances TGFβ-mediated signaling by TβRI and is the first TβRI-interacting non-Smad protein identified that positively regulates this receptor. The interaction of 14-3-3ϵ with schistosome and human TβRI suggests a conserved, but previously unappreciated, role for this protein in TGFβ signaling pathways
Infrared Dielectric Properties of Low-stress Silicon Nitride
Silicon nitride thin films play an important role in the realization of sensors, filters, and high-performance circuits. Estimates of the dielectric function in the far- and mid-IR regime are derived from the observed transmittance spectra for a commonly employed low-stress silicon nitride formulation. The experimental, modeling, and numerical methods used to extract the dielectric parameters with an accuracy of approximately 4% are presented
Horn Coupled Multichroic Polarimeters for the Atacama Cosmology Telescope Polarization Experiment
Multichroic polarization sensitive detectors enable increased sensitivity and
spectral coverage for observations of the Cosmic Microwave Background (CMB). An
array optimized for dual frequency detectors can provide 1.7 times gain in
sensitivity compared to a single frequency array. We present the design and
measurements of horn coupled multichroic polarimeters encompassing the 90 and
150 GHz frequency bands and discuss our plans to field an array of these
detectors as part of the ACTPol project
Mechanical design and development of TES bolometer detector arrays for the Advanced ACTPol experiment
The next generation Advanced ACTPol (AdvACT) experiment is currently underway
and will consist of four Transition Edge Sensor (TES) bolometer arrays, with
three operating together, totaling ~5800 detectors on the sky. Building on
experience gained with the ACTPol detector arrays, AdvACT will utilize various
new technologies, including 150mm detector wafers equipped with multichroic
pixels, allowing for a more densely packed focal plane. Each set of detectors
includes a feedhorn array of stacked silicon wafers which form a spline profile
leading to each pixel. This is then followed by a waveguide interface plate,
detector wafer, back short cavity plate, and backshort cap. Each array is
housed in a custom designed structure manufactured from high purity copper and
then gold plated. In addition to the detector array assembly, the array package
also encloses cryogenic readout electronics. We present the full mechanical
design of the AdvACT high frequency (HF) detector array package along with a
detailed look at the detector array stack assemblies. This experiment will also
make use of extensive hardware and software previously developed for ACT, which
will be modified to incorporate the new AdvACT instruments. Therefore, we
discuss the integration of all AdvACT arrays with pre-existing ACTPol
infrastructure.Comment: 9 pages, 5 figures, SPIE Astronomical Telescopes and Instrumentation
conference proceeding
Invasive Group A Streptococcal Infection in High School Football Players, New York City, 2003
After being notified that 2 high school football teammates were hospitalized with confirmed or suspected invasive group A streptococcal infections, we conducted an investigation of possible spread among other team members. This investigation highlights a need for guidelines on management of streptococcal and other infectious disease outbreaks in team sport settings
The Atacama Cosmology Telescope: Two-Season ACTPol Lensing Power Spectrum
We report a measurement of the power spectrum of cosmic microwave background
(CMB) lensing from two seasons of Atacama Cosmology Telescope Polarimeter
(ACTPol) CMB data. The CMB lensing power spectrum is extracted from both
temperature and polarization data using quadratic estimators. We obtain results
that are consistent with the expectation from the best-fit Planck LCDM model
over a range of multipoles L=80-2100, with an amplitude of lensing A_lens =
1.06 +/- 0.15 (stat.) +/- 0.06 (sys.) relative to Planck. Our measurement of
the CMB lensing power spectrum gives sigma_8 Omega_m^0.25 = 0.643 +/- 0.054;
including baryon acoustic oscillation scale data, we constrain the amplitude of
density fluctuations to be sigma_8 = 0.831 +/- 0.053. We also update
constraints on the neutrino mass sum. We verify our lensing measurement with a
number of null tests and systematic checks, finding no evidence of significant
systematic errors. This measurement relies on a small fraction of the ACTPol
data already taken; more precise lensing results can therefore be expected from
the full ACTPol dataset.Comment: 17 pages, 11 figures, to be submitted to Physical Review
Design of 280 GHz feedhorn-coupled TES arrays for the balloon-borne polarimeter SPIDER
We describe 280 GHz bolometric detector arrays that instrument the
balloon-borne polarimeter SPIDER. A primary science goal of SPIDER is to
measure the large-scale B-mode polarization of the cosmic microwave background
in search of the cosmic-inflation, gravitational-wave signature. 280 GHz
channels aid this science goal by constraining the level of B-mode
contamination from galactic dust emission. We present the focal plane unit
design, which consists of a 1616 array of conical, corrugated feedhorns
coupled to a monolithic detector array fabricated on a 150 mm diameter silicon
wafer. Detector arrays are capable of polarimetric sensing via waveguide
probe-coupling to a multiplexed array of transition-edge-sensor (TES)
bolometers. The SPIDER receiver has three focal plane units at 280 GHz, which
in total contains 765 spatial pixels and 1,530 polarization sensitive
bolometers. By fabrication and measurement of single feedhorns, we demonstrate
14.7 FHWM Gaussian-shaped beams with 1% ellipticity in a 30%
fractional bandwidth centered at 280 GHz. We present electromagnetic
simulations of the detection circuit, which show 94% band-averaged,
single-polarization coupling efficiency, 3% reflection and 3% radiative loss.
Lastly, we demonstrate a low thermal conductance bolometer, which is
well-described by a simple TES model and exhibits an electrical noise
equivalent power (NEP) = 2.6 10 W/,
consistent with the phonon noise prediction.Comment: Proceedings of SPIE Astronomical Telescopes + Instrumentation 201
- …