343 research outputs found

    Plasma antioxidant status, immunoglobulin G oxidation and lipid peroxidation in demented patients:Relevance to Alzheimer disease and vascular dementia

    Get PDF
    A large body of evidence supports a role of oxidative stress in Alzheimer disease (AD) and in cerebrovascular disease. A vascular component might be critical in the pathophysiology of AD, but there is a substantial lack of data regarding the simultaneous behavior of peripheral antioxidants and biomarkers of oxidative stress in AD and vascular dementia (VaD). Sixty-three AD patients, 23 VaD patients and 55 controls were included in the study. We measured plasma levels of water-soluble (vitamin C and uric acid) and lipophilic (vitamin E, vitamin A, carotenoids including lutein, zeaxanthin, β-cryptoxanthin, lycopene, α- and β-carotene) antioxidant micronutrients as well as levels of biomarkers of lipid peroxidation [malondialdehyde (MDA)] and of protein oxidation [immunoglobulin G (IgG) levels of protein carbonyls and dityrosine] in patients and controls. With the exception of β-carotene, all antioxidants were lower in demented patients as compared to controls. Furthermore, AD patients showed a significantly higher IgG dityrosine content as compared to controls. AD and VaD patients showed similar plasma levels of plasma antioxidants and MDA as well as a similar IgG content of protein carbonyls and dityrosine. We conclude that, independent of its nature - vascular or degenerative - dementia is associated with the depletion of a large spectrum of antioxidant micronutrients and with increased protein oxidative modification. This might be relevant to the pathophysiology of dementing disorders, particularly in light of the recently suggested importance of the vascular component in AD development. Copyright © 2004 S. Karger AG, Basel

    The use of the SAEM algorithm in MONOLIX software for estimation of population pharmacokinetic-pharmacodynamic-viral dynamics parameters of maraviroc in asymptomatic HIV subjects

    Get PDF
    Using simulated viral load data for a given maraviroc monotherapy study design, the feasibility of different algorithms to perform parameter estimation for a pharmacokinetic-pharmacodynamic-viral dynamics (PKPD-VD) model was assessed. The assessed algorithms are the first-order conditional estimation method with interaction (FOCEI) implemented in NONMEM VI and the SAEM algorithm implemented in MONOLIX version 2.4. Simulated data were also used to test if an effect compartment and/or a lag time could be distinguished to describe an observed delay in onset of viral inhibition using SAEM. The preferred model was then used to describe the observed maraviroc monotherapy plasma concentration and viral load data using SAEM. In this last step, three modelling approaches were compared; (i) sequential PKPD-VD with fixed individual Empirical Bayesian Estimates (EBE) for PK, (ii) sequential PKPD-VD with fixed population PK parameters and including concentrations, and (iii) simultaneous PKPD-VD. Using FOCEI, many convergence problems (56%) were experienced with fitting the sequential PKPD-VD model to the simulated data. For the sequential modelling approach, SAEM (with default settings) took less time to generate population and individual estimates including diagnostics than with FOCEI without diagnostics. For the given maraviroc monotherapy sampling design, it was difficult to separate the viral dynamics system delay from a pharmacokinetic distributional delay or delay due to receptor binding and subsequent cellular signalling. The preferred model included a viral load lag time without inter-individual variability. Parameter estimates from the SAEM analysis of observed data were comparable among the three modelling approaches. For the sequential methods, computation time is approximately 25% less when fixing individual EBE of PK parameters with omission of the concentration data compared with fixed population PK parameters and retention of concentration data in the PD-VD estimation step. Computation times were similar for the sequential method with fixed population PK parameters and the simultaneous PKPD-VD modelling approach. The current analysis demonstrated that the SAEM algorithm in MONOLIX is useful for fitting complex mechanistic models requiring multiple differential equations. The SAEM algorithm allowed simultaneous estimation of PKPD and viral dynamics parameters, as well as investigation of different model sub-components during the model building process. This was not possible with the FOCEI method (NONMEM version VI or below). SAEM provides a more feasible alternative to FOCEI when facing lengthy computation times and convergence problems with complex models

    Two-Particle-Self-Consistent Approach for the Hubbard Model

    Full text link
    Even at weak to intermediate coupling, the Hubbard model poses a formidable challenge. In two dimensions in particular, standard methods such as the Random Phase Approximation are no longer valid since they predict a finite temperature antiferromagnetic phase transition prohibited by the Mermin-Wagner theorem. The Two-Particle-Self-Consistent (TPSC) approach satisfies that theorem as well as particle conservation, the Pauli principle, the local moment and local charge sum rules. The self-energy formula does not assume a Migdal theorem. There is consistency between one- and two-particle quantities. Internal accuracy checks allow one to test the limits of validity of TPSC. Here I present a pedagogical review of TPSC along with a short summary of existing results and two case studies: a) the opening of a pseudogap in two dimensions when the correlation length is larger than the thermal de Broglie wavelength, and b) the conditions for the appearance of d-wave superconductivity in the two-dimensional Hubbard model.Comment: Chapter in "Theoretical methods for Strongly Correlated Systems", Edited by A. Avella and F. Mancini, Springer Verlag, (2011) 55 pages. Misprint in Eq.(23) corrected (thanks D. Bergeron

    Carnitine reduces the lipoperoxidative damage of the membrane and apoptosis after induction of cell stress in experimental glaucoma

    Get PDF
    The pathological damage caused by glaucoma is associated to a high intraocular pressure. The ocular hypertone is most likely due to a defective efflux of aqueous humor from the anterior chamber of the eye. Ocular hypertension causes apoptotic death of retinal ganglion cells and overexpression of molecular markers typical of cell stress response and apoptosis. In this work, we report on the neuroprotective, antiapoptotic and antioxidant action of a natural substance, -carnitine. This compound is known for its ability to improve the mitochondrial performance. We analyze a number of cellular and molecular markers, typical of ocular hypertension and, in general, of the cell stress response. In particular, -carnitine reduces the expression of glial fibrillary acidic protein, inducible nitric oxide synthase, ubiquitin and caspase 3 typical markers of cell stress. In addition, the morphological analysis of the optic nerve evidenced a reduction of the pathological excavation of the optic disk. This experimental hypertone protocol induces a severe lipoperoxidation, which is significantly reduced by -carnitine. The overall interpretation is that mortality of the retinal cells is due to membrane damage

    A new vicious cycle involving glutamate excitotoxicity, oxidative stress and mitochondrial dynamics

    Get PDF
    Glutamate excitotoxicity leads to fragmented mitochondria in neurodegenerative diseases, mediated by nitric oxide and S-nitrosylation of dynamin-related protein 1, a mitochondrial outer membrane fission protein. Optic atrophy gene 1 (OPA1) is an inner membrane protein important for mitochondrial fusion. Autosomal dominant optic atrophy (ADOA), caused by mutations in OPA1, is a neurodegenerative disease affecting mainly retinal ganglion cells (RGCs). Here, we showed that OPA1 deficiency in an ADOA model influences N-methyl-D-aspartate (NMDA) receptor expression, which is involved in glutamate excitotoxicity and oxidative stress. Opa1enu/+ mice show a slow progressive loss of RGCs, activation of astroglia and microglia, and pronounced mitochondrial fission in optic nerve heads as found by electron tomography. Expression of NMDA receptors (NR1, 2A, and 2B) in the retina of Opa1enu/+ mice was significantly increased as determined by western blot and immunohistochemistry. Superoxide dismutase 2 (SOD2) expression was significantly decreased, the apoptotic pathway was activated as Bax was increased, and phosphorylated Bad and BcL-xL were decreased. Our results conclusively demonstrate that not only glutamate excitotoxicity and/or oxidative stress alters mitochondrial fission/fusion, but that an imbalance in mitochondrial fission/fusion in turn leads to NMDA receptor upregulation and oxidative stress. Therefore, we propose a new vicious cycle involved in neurodegeneration that includes glutamate excitotoxicity, oxidative stress, and mitochondrial dynamics

    Expression profile analysis of the inflammatory response regulated by hepatocyte nuclear factor 4α

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatocyte nuclear factor 4α (HNF4α), a liver-specific transcription factor, plays a significant role in liver-specific functions. However, its functions are poorly understood in the regulation of the inflammatory response. In order to obtain a genomic view of HNF4α in this context, microarray analysis was used to probe the expression profile of an inflammatory response induced by cytokine stimulation in a model of HNF4α knock-down in HepG2 cells.</p> <p>Results</p> <p>The expression of over five thousand genes in HepG2 cells is significantly changed with the dramatic reduction of HNF4α concentration compared to the cells with native levels of HNF4α. Over two thirds (71%) of genes that exhibit differential expression in response to cytokine treatment also reveal differential expression in response to HNF4α knock-down. In addition, we found that a number of HNF4α target genes may be indirectly mediated by an ETS-domain transcription factor ELK1, a nuclear target of mitogen-activated protein kinase (MAPK).</p> <p>Conclusion</p> <p>The results indicate that HNF4α has an extensive impact on the regulation of a large number of the liver-specific genes. HNF4α may play a role in regulating the cytokine-induced inflammatory response. This study presents a novel function for HNF4α, acting not only as a global player in many cellular processes, but also as one of the components of inflammatory response in the liver.</p

    Beneficial Effects of a Q-ter® Based Nutritional Mixture on Functional Performance, Mitochondrial Function, and Oxidative Stress in Rats

    Get PDF
    Mitochondrial dysfunction and oxidative stress are central mechanisms underlying the aging process and the pathogenesis of many age-related diseases. Selected antioxidants and specific combinations of nutritional compounds could target many biochemical pathways that affect both oxidative stress and mitochondrial function and, thereby, preserve or enhance physical performance. supplementation in rats at 29 months of age. supplementation may be particularly beneficial when initiated prior to major biological and functional declines that appear to occur with advancing age

    Mitochondrial abnormalities and low grade inflammation are present in the skeletal muscle of a minority of patients with amyotrophic lateral sclerosis; an observational myopathology study

    Get PDF
    BACKGROUND Amyotrophic lateral sclerosis (ALS) is a primary progressive neurodegenerative disease characterised by neuronal loss of lower motor neurons (in the spinal cord and brainstem) and/or upper motor neurons (in the motor cortex) and subsequent denervation atrophy of skeletal muscle. AIM A comprehensive examination of muscle pathology from a cohort of clinically confirmed ALS patients, including an investigation of inflammation, complement activation, and deposition of abnormal proteins in order to compare them with findings from an age-matched, control group. MATERIAL AND METHODS 31 muscle biopsies from clinically confirmed ALS patients and 20 normal controls underwent a comprehensive protocol of histochemical and immunohistochemical stains, including HLA-ABC, C5b-9, p62, and TDP-43. RESULTS Neurogenic changes were confirmed in 30/31 ALS cases. In one case, no neurogenic changes could be detected. Muscle fibre necrosis was seen in 5/31 cases and chronic mononuclear inflammatory cell infiltration in 5/31 (2 of them overlapped with those showing muscle necrosis). In four biopsies there was an increase in the proportion of cytochrome oxidase (COX) negative fibres (2-3%). p62 faintly stained cytoplasmic bodies in eight cases and none were immunoreactive to TDP-43. CONCLUSION This large series of muscle biopsies from patients with ALS demonstrates neurogenic atrophy is a nearly uniform finding and that mild mitochondrial abnormalities and low-grade inflammation can be seen and do not rule out the diagnosis of ALS. These findings could lend support to the notion that ALS is a complex and heterogeneous disorder
    corecore