9 research outputs found

    Temperature dependence of the Dzyaloshinskii-Moriya interaction in Pt/Co/Cu thin film heterostructures

    No full text
    © 2018 Author(s). Magnetic materials that exhibit chiral domain walls are of great interest for spintronic devices. In this work, we examine the temperature-dependent behavior of the Dzyaloshinskii-Moriya interaction (DMI) in Pt/Co/Cu thin film heterostructures. We extract the DMI strength, D, from static domain spacing analysis between 300 K and 500 K and compare its temperature dependence to that of the magnetic anisotropy, Ku, and saturation magnetization, Ms. Consistent with expected scaling in thin films, Ms exhibits Bloch-law temperature scaling and Ku scales as Ms2.1±0.1. However, D varies more strongly with temperature than expected, scaling as D-Ms4.9±0.7, indicating that interfacial DMI is more sensitive to thermal fluctuations than bulk magnetic properties. We suggest that this may be related to the temperature dependence of locally induced magnetic moments in the Pt underlayer and the 3d-5d orbital interactions at the interface. While we observe stable domain widths in the studied temperature range, a strongly temperature dependent DMI may have significant consequences for potential devices based on the chiral domain wall or skyrmion motion

    Interface-driven chiral magnetism and current-driven domain walls in insulating magnetic garnets

    No full text
    © 2019, The Author(s), under exclusive licence to Springer Nature Limited. Magnetic oxides exhibit rich fundamental physics1–4 and technologically desirable properties for spin-based memory, logic and signal transmission5–7. Recently, spin–orbit-induced spin transport phenomena have been realized in insulating magnetic oxides by using proximate heavy metal layers such as platinum8–10. In their metallic ferromagnet counterparts, such interfaces also give rise to a Dzyaloshinskii–Moriya interaction11–13 that can stabilize homochiral domain walls and skyrmions with efficient current-driven dynamics. However, chiral magnetism in centrosymmetric oxides has not yet been observed. Here we discover chiral magnetism that allows for pure spin-current-driven domain wall motion in the most ubiquitous class of magnetic oxides, ferrimagnetic iron garnets. We show that epitaxial rare-earth iron garnet films with perpendicular magnetic anisotropy exhibit homochiral NĂ©el domain walls that can be propelled faster than 800 m s−1 by spin current from an adjacent platinum layer. We find that, despite the relatively small interfacial Dzyaloshinskii–Moriya interaction, very high velocities can be attained due to the antiferromagnetic spin dynamics associated with ferrimagnetic order

    Hydration of gadolinium oxide ( Gd O x ) and its effect on voltage-induced Co oxidation in a Pt / Co / Gd O x / Au heterostructure

    No full text
    © 2019 American Physical Society. Magneto-ionic control of magnetism has garnered great interest in recent years due to the large magnetic changes that can be induced using a relatively small voltage. One model structure for this is Pt/Co/GdOx/Au, where Co is the magnetic layer and GdOx is the ionic conductor, with the magnetic properties dependent on the oxidation state of Co. While this structure is commonly used, there is limited understanding of the effect of GdOx properties on voltage-induced magnetic changes. In this work, we show that hydration of Gd2O3 to form Gd(OH)3 is crucial for voltage-induced Co oxidation in a Pt/Co/GdOx/Au device. By examining the rate of Co oxidation in nonhydrated and hydrated devices, we conclude that H2O in the GdOx layer acts as an oxidant during the voltage-induced Co oxidation process. Co oxidation through this interfacial reaction process is confirmed by in situ x-ray absorption spectroscopy

    Magneto-ionic control of magnetism using a solid-state proton pump

    No full text
    © 2018, The Author(s), under exclusive licence to Springer Nature Limited. Voltage-gated ion transport as a means of manipulating magnetism electrically could enable ultralow-power memory, logic and sensor technologies. Earlier work made use of electric-field-driven O 2− displacement to modulate magnetism in thin films by controlling interfacial or bulk oxidation states. However, elevated temperatures are required and chemical and structural changes lead to irreversibility and device degradation. Here we show reversible and non-destructive toggling of magnetic anisotropy at room temperature using a small gate voltage through H + pumping in all-solid-state heterostructures. We achieve 90° magnetization switching by H + insertion at a Co/GdO x interface, with no degradation in magnetic properties after >2,000 cycles. We then demonstrate reversible anisotropy gating by hydrogen loading in Pd/Co/Pd heterostructures, making metal–metal interfaces susceptible to voltage control. The hydrogen storage metals Pd and Pt are high spin–orbit coupling materials commonly used to generate perpendicular magnetic anisotropy, Dzyaloshinskii–Moriya interaction, and spin–orbit torques in ferromagnet/heavy-metal heterostructures. Thus, our work provides a platform for voltage-controlled spin–orbitronics

    Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet

    No full text
    © 2018, The Author(s), under exclusive licence to Springer Nature Limited. Spintronics is a research field that aims to understand and control spins on the nanoscale and should enable next-generation data storage and manipulation. One technological and scientific key challenge is to stabilize small spin textures and to move them efficiently with high velocities. For a long time, research focused on ferromagnetic materials, but ferromagnets show fundamental limits for speed and size. Here, we circumvent these limits using compensated ferrimagnets. Using ferrimagnetic Pt/Gd44Co56/TaOx films with a sizeable Dzyaloshinskii–Moriya interaction, we realize a current-driven domain wall motion with a speed of 1.3 km s–1 near the angular momentum compensation temperature (TA) and room-temperature-stable skyrmions with minimum diameters close to 10 nm near the magnetic compensation temperature (TM). Both the size and dynamics of the ferrimagnet are in excellent agreement with a simplified effective ferromagnet theory. Our work shows that high-speed, high-density spintronics devices based on current-driven spin textures can be realized using materials in which TA and TM are close together

    The role of temperature and drive current in skyrmion dynamics

    No full text
    Magnetic skyrmions are topologically stabilized nanoscale spin structures that could be of use in the development of future spintronic devices. When a skyrmion is driven by an electric current it propagates at an angle relative to the flow of current-known as the skyrmion Hall angle (SkHA)-that is a function of the drive current. This drive dependence, as well as thermal effects due to Joule heating, could be used to tailor skyrmion trajectories, but are not well understood. Here we report a study of skyrmion dynamics as a function of temperature and drive amplitude. We find that the skyrmion velocity depends strongly on temperature, while the SkHA does not and instead evolves differently in the low- and high-drive regimes. In particular, the maximum skyrmion velocity in ferromagnetic devices is limited by a mechanism based on skyrmion surface tension and deformation (where the skyrmion transitions into a stripe). Our mechanism provides a complete description of the SkHA in ferromagnetic multilayers across the full range of drive strengths, illustrating that skyrmion trajectories can be engineered for device applications. An analysis of skyrmion dynamics at different temperatures and electric drive currents is used to develop a complete description of the skyrmion Hall angle in ferromagnetic multilayers from the creep to the flow regime and illustrates that skyrmion trajectories can be engineered for device applications
    corecore