72 research outputs found

    The Ecological Role of Biodiversity for Crop Protection

    Get PDF
    Agricultural system is a complex community sheltering different ecological units. The units of this complex structure are in balance with each other showing fluctuations to ensure effective regulations from time to time depending on the abundance of both undesirable and beneficial organisms. This balance is a major case for biological activity playing an important role to maintain biological diversity. Once this natural balance is impaired due to abiotic and biotic factors occurring in biosystems, the economic and environmental problems appear becoming significant for the economical dimension in agriculture. The most important components showing deficiencies in systemically agroecostructure problems result from soil fertility, pest and disease management. Large interactions, which are concomitantly persisting with biological processes, are on plant and animal biodiversity, which have been affected by miss-treatments in crop protection and plant nutrition. Hence, food-web and biodiversity are indirectly seriously damaged in nature, such as recycling of nutrients and changes of microclimate. In this chapter, we have discussed the major effects of crop protection on biodiversity in detail regarding the persistence of biodiversity that needs to be mediated, considering the preserving of ecological properties and sustainable maintenance of biological integrity in agroecosystems

    Utilization from Computational Methods and Omics Data for Antiviral Drug Discovery to Control of SARS-CoV-2

    Get PDF
    SARS-CoV-2 pandemic issue threatening world health and economy became a major problem with its destructive impact. The researchers have seen that conventional methods related to medicine and immunological background do not resolve this disease by gained knowledge of viruses previously studied. Advances in computational biology comprising bioinformatics, simulation, and yielded databases have accelerated and strengthened our facilities to predict some cases related to the biological complex by comparison with the use of artificial intelligence. Various novel drugs by using in silico resources and in vivo imaging techniques associated with high-resolution technologies can cause the confidential development of methods for the detection of antiviral drugs and the production of diagnosis kits. In the future, we will start seeing these novel techniques’ positive reflection and their advantages in cost/time effective profits. This chapter highlights these approaches and addresses updated knowledge currently used for research and development

    Molecular fingerprinting of Botrytis cinerea population structure from different hosts

    Get PDF
    Botrytis cinerea (teleomorph: Botryotinia fuckeliana) causes gray mold disease on vegetable crops in greenhouses. Profound knowledge on pathogen diversity is necessary for efficiently disease management. In this study, forty-two B. cinerea isolates collected from 36 different greenhouses in Antalya province of Turkey were investigated. Twelve SRAP (sequence-related amplified polymorphism) and 18 ISSR (inter simple sequence repeat) primers producing high polymorphic fragments were used to genetic diversity of B. cinerea isolates infecting dill, basil, lettuce, bean, cucumber, tomato, pepper and eggplant. The unweighted pair-group method with arithmetic average analysis (UPGMA) was used to evaluate of combined ISSR and SRAP data showing a similarity range 0.15-0.90 among the isolates. Cophenetic correlation of the tree was high level (r=0.93). Interestingly, cluster analysis showed a divergent group consisting of lettuce isolates which were genetically different from the other isolates. On the other hand, transposable elements (Flipper and Boty) were detected among isolates from all the hosts. Isolates containing only the Fliper element were detected. The results showed that genetically characterized B. cinerea populations by a high level of genetic diversity were associated with genotype flow and the evolutionary potential of B. cinerea. In further studies, the newly tested molecular markers are useful and can be suggested for analyzing of genetic diversity and population structure of this pathogen on different hosts

    Adjuvant composite cold atmospheric plasma therapy increases antitumoral effect of doxorubicin hydrochloride

    Get PDF
    IntroductionCancer is a global health concern, with a significant impact on mortality rates. Despite advancements in targeted antitumor drugs, the development of new therapies remains challenging due to high costs and tumor resistance. The exploration of novel treatment approaches, such as combined chemotherapy, holds promise for improving the effectiveness of existing antitumor agents. Cold atmospheric plasma has demonstrated antineoplastic effects in preclinical studies, but its potential in combination with specific ions for lymphosarcoma treatment has not been investigated.MethodsAn in vivo study was conducted using a Pliss lymphosarcoma rat model to evaluate the antitumor effects of composite cold plasma and controlled ionic therapy. Groups of rats were exposed to composite cold plasma for 3, 7, and 14 days, while the control group received no treatment. Additionally, a combination of chemotherapy with cold plasma therapy was assessed, with doxorubicin hydrochloride administered at a dosage of 5 mg/kg. PERENIO IONIC SHIELD™ emitted a controlled ionic formula during the treatment period.ResultsThe in vivo study demonstrated tumor growth inhibition in groups exposed to composite cold plasma for 3, 7, and 14 days compared to the control group. Furthermore, combining chemotherapy with cold plasma therapy resulted in a threefold reduction in tumor volume. The most significant antitumor effects were observed when doxorubicin hydrochloride at a dosage of 5 mg/kg was combined with 14 days of PERENIO IONIC SHIELD™ ionic therapy.DiscussionThe use of composite cold plasma therapy, in conjunction with a controlled ionic formula emitted by PERENIO IONIC SHIELD™, in the complex treatment of lymphosarcoma in rats showed promising antitumor effects. The combination therapy, particularly when combined with doxorubicin hydrochloride, demonstrated enhanced efficacy. These findings suggest the potential for utilizing cold atmospheric plasma and controlled ions as an adjunctive treatment approach in lymphosarcoma therapy. Further research is warranted to explore the mechanisms underlying these effects and to evaluate the safety and efficacy in human clinical trials

    Biogenic Nano-Particles and their Use in Agro-ecosystems

    No full text
    The development of eco-friendly biological methods in material synthesis has been reported with chemically well-defined variety of inorganic nanoparticles (NP) that are produced by using various microorganisms. In last decades, lots of research articles have suggested required conditions to control and particle stability on biosynthesized nanoparticles, besides their applications in a wide spectrum of potential fields including target oriented drug delivery, cancer therapy, gene therapy and DNA based diagnosis, using of antimicrobial agents, biosensors, enhancing enzymatic reaction capacitywith advanced medical visualization technology. Even the present limitations and future prospects for the production of inorganic nanoparticles by microorganisms are dramatically studied, their disadvantages in practice concerning their negative effects on micro- and macroorganisms are attracting the attention of researchers. As another concept, the behaviours of microorganism change depending on available concentration of nanomolecules containing inorganic chemical structures in environment affecting their antibacterial compounds secretion. The review highlights particularly ignored or missed cases on the usage of nanoparticle producer microorganisms. We briefly discuss here, as an another concept; enhancing anti-phytopathogen potential capacity of soil can negatively be affected by NP synthesizing microorganisms that may drastically impair microflora balance and its own biocontrol capacity besidesin contrary to their expected positive advantages in purpose of theirantimicrobial property

    Origin and Impact of COVID-19 Pandemic Originating From SARS-CoV-2 Infection Across the Globe

    No full text
    SARS-CoV-2 pandemic issue threatening world health and economy became a major problem with its destructive impact. The researchers have seen that conventional methods related to medicine and immunological background do not resolve this disease by gained knowledge of viruses previously studied. Advances in computational biology comprising bioinformatics, simulation, and yielded databases have accelerated and strengthened our facilities to predict some cases related to the biological complex by comparison with the use of artificial intelligence. Various novel drugs by using in silico resources and in vivo imaging techniques associated with high-resolution technologies can cause the confidential development of methods for the detection of antiviral drugs and the production of diagnosis kits. In the future, we will start seeing these novel techniques’ positive reflection and their advantages in cost/time effective profits. This chapter highlights these approaches and addresses updated knowledge currently used for research and development
    corecore