DERIM 📗

Molecular fingerprinting of Botrytis cinerea population structure from different hosts

İlknur POLAT¹ Görkem SÜLÜ¹ Aytül KİTAPÇI¹ Emine GÜMRÜKÇÜ¹ Ömür BAYSAL²

¹ Batı Akdeniz Tarımsal Araştırma Enstitüsü, Antalya

² Muğla Sıtkı Koçman Üniversitesi Fen Fakültesi Moleküler Biyoloji ve Genetik Bölümü, Muğla

Sorumlu Yazar/Corresponding Author: i_polat@hotmail.com

ORCID: 0000-0001-9841-847X

condition in dzul/ controponding/ tution.1_polat@notifidi.com		1 0041 0477
Makale Bilgisi/Article Info	Araştırma Makalesi/Research Article	
Derim, 2018/35(2):121-134	Geliş Tarihi/Received: 27.03.2018	- 123 安美市
doi: 10.16882/derim.2018.410051	Kabul Tarihi/Accepted: 04.06.2018	⊡ ∺ <i>433</i>

Abstract

Botrytis cinerea (teleomorph: Botryotinia fuckeliana) causes gray mold disease on vegetable crops in greenhouses. Profound knowledge on pathogen diversity is necessary for efficiently disease management. In this study, forty-two *B. cinerea* isolates collected from 36 different greenhouses in Antalya province of Turkey were investigated. Twelve SRAP (sequence-related amplified polymorphism) and 18 ISSR (inter simple sequence repeat) primers producing high polymorphic fragments were used to genetic diversity of *B. cinerea* isolates infecting dill, basil, lettuce, bean, cucumber, tomato, pepper and eggplant. The unweighted pair-group method with arithmetic average analysis (UPGMA) was used to evaluate of combined ISSR and SRAP data showing a similarity range 0.15-0.90 among the isolates. Cophenetic correlation of the tree was high level (r=0.93). Interestingly, cluster analysis showed a divergent group consisting of lettuce isolates which were genetically different from the other isolates. On the other hand, transposable elements (*Flipper and Boty*) were detected among isolates from all the hosts. Isolates containing only the *Fliper* element were detected. The results showed that genetically characterized *B. cinerea* populations by a high level of genetic diversity were associated with genotype flow and the evolutionary potential of *B. cinerea*. In further studies, the newly tested molecular markers are useful and can be suggested for analyzing of genetic diversity and population structure of this pathogen on different hosts.

Keywords: Gray mold; Genetic diversity; Host differentiation; ISSR; SRAP; Transposable elements

Farklı konukçulardan elde edilen Botrytis cinerea populasyon yapısının moleküler tanılanması

Öz

Botrytis cinerea (teleomorph: Botryotinia fuckeliana) örtüaltı sebze yetiştiriciliğinde kurşuni küf hastalığı etmenidir. Patojende oluşan farklılıkların bilinmesi hastalıkla mücadelenin etkinliğini arttırmaktadır. Çalışmada, Türkiye'nin Antalya ilinde yer alan 36 farklı seradan 42 adet izolat kullanılmıştır. On iki SRAP (sequence -related amplified polymorphism) primer kombinasyonu ve 18 ISSR (inter simple sequence repeat) primeri dereotu, fesleğen, marul, fasulye, hıyar, domates, biber ve patlıcandan elde edilen *B. cinerea* izolatlarının genetik farklılıklarının belirlenmesinde oldukça yüksek polimorfizm sağlamışlardır. ISSR ve SRAP markırlardan elde edilen sonuçlar UPGMA (The unweighted pair-group method with arithmetic average analysis) analizine göre izolatlar arasında 0.15-0.90 oranında değişen benzerlik elde edilmiştir. Ayrıca, cophenetic correlation değeri r=0.93 ile oldukça yüksek bulunmuştur. Cluster analizi sonuçları değerlendirildiğinde marul izolatları diğer izolatlara göre oldukça uzak kümelenmiştir. Ayrıca, tüm izolatlar için tranpozabl elementler (*Flipper* ve *Boty*) araştırılmış ve sadece *Flipper* element tespit edilmiştir. Elde edilen genetik karakterizasyon sonuçlarına göre, *B. cinerea* populasyonunda oldukça yüksek seviyede genetik farklılıklar bulunmuştur. Bu durum, *B. cinerea*'nın evrimselleşme potensiyeli ve gen akışlarından kaynaklanabilir. Farklı konukçulardan elde edilen bu patojenin genetik farklılıklarının belirlenmesinde kullanılan moleküler markırlar, ileride yapılacak çalışmalara da ışık tutmaktadır.

Anahtar Kelimeler: Kurşuni küf; Genetik farklılık; Konukçu farklılığı; ISSR; SRAP; Transpozabl elementler

1. Introduction

Greenhouse cultivation is the most widespread style for horticultural crops with advantages worldwide (Jensen, 2002). In the world, China takes first place with 2 million 700 thousand hectares as protected agricultural land, South Korea, Spain, Japan and Turkey follow respectively (FAO, 2014). Mediterranean region of Turkey is unique area in the world due to the mild winter climatic conditions for greenhouse cultivation (Tüzel and Leonardi, 2010). About 250.000 da of Turkey's general greenhouse land is hosted in Antalya province that is around 35 percent of total greenhouse of Turkey capacity (TUIK, 2014). Diseases and pests are the most important factors limiting crop production in our country. On the other hand, use of over dose pesticide causes the environmental pollution, leads to damage on soil structure, disturb the natural balance in microflora, (Elad et al., 2007) and resistance to pesticides (Williamson et al., 2007; Sun et al., Shao et al., 2015). B. cinerea 2010: (teleomorph: Botryotinia fuckeliana (de Bary) Whetzel) causing gray mold disease is a polyphagous an airborne fungal pathogen attacking over 200 crop hosts worldwide. Pathogen limits vegetable cultivation in greenhouses and its control in fields is difficult. It has different modes of attack and survives as mycelia and/or conidia form for a long time (Williamson et al., 2007). In cultivation under greenhouse conditions, there is no available resistance variety to B. cinerea, yet. Therefore, effective control using chemicals is very important (Rosslenbroich and Stuebler, 2000; Sun et al., 2010). The pathogen is in the list of 'high-risk' category according to statement of Fungicide Resistance Action Committee (Brent and Hollomon, 1998; Angelini et al., 2012). Researchers have studied on its taxonomy and species for many years for effective disease management (Sun et al., 2010).

Molecular markers based on DNA have been introduced over the last two decades, which have revolutionized the entire scenario of biological sciences. Major DNA markers using for identification. diversity, taxonomy, relationship, fingerprinting and diagnostics were suggested (Datta et al., 2011; Baysal et al., 2013). In recent years, these markers as specific fragments of DNA that can be identified within the whole genome have been improved. SRAP molecular markers system also based on random amplification of coding regions in the genome. Its use in genetic diversity analysis is a simple, middle-yield, high-dominant total, repetitive way on genetic diversity of pathogens (Polat et al., 2014). ISSR markers allow a costeffective detection and guantification of the pathogen (Schlötterer, 2004; Baysal et al., 2011). Transposons can have significant effects on distinctive phenotypic traits of phytopathogenic fungi. Two transposable elements, Boty and Flipper, are known to be

associated with the ubiquitous fungus *B. cinerea* (Kecskeméti et al., 2014).

This study aimed to characterize and assess the fingerprinting of *B. cinerea* isolates from different host using combined dominant ISSR and co-dominant SRAP molecular markers. ISSR and SRAP markers have not been used before in any study related to genetic diversity of *B. cinerea* to evaluate of isolates collected from different hosts. Furthermore, transposable elements (*Flipper* and *Boty*) were detected among isolates from all the hosts.

2. Materials and Methods

2.1. Survey studies

All plants infected with Botrytis cinerea were collected from the vegetable greenhouses during survey studies. Forty-two B. cinerea isolates were sampled representing from different districts Kumluca, Demre, Muratpaşa, Kepez, Aksu, Serik, and Alanya county of Antalya province in Turkey. Forty-two B. cinerea isolates infecting dill, basil, bean, cucumber, tomato, pepper, eggplant and lettuce were obtained from these different hosts. (Table 1). All samples were transferred to the laboratory in individual polyethylene bags to prevent cross contamination. Then, samples incubated in sterile petri dishes (PDA with 100 mgL⁻¹ streptomycin sulphate) in incubator (23±1°C) to obtain abundant conidia. Singleobtained from isolates spore was and morphologically identified using microscope (Olympos BX 43). For molecular diagnostics, total genomic DNA was extracted from mycelium of B. cinerea using DNA isolation kit (Promega, Wizard Genomic DNA Purification Madison. Kit, US) according to the manufacturer's instructions. DNA quality (260/230 and 260/280 ratios) and concentration were checked by NanoDrop Spectrophotometer (Thermo Scientific-Waltham, Massachusetts). ITS1 and ITS4 universal primers (White et al., 1990) were used to identify of isolates for polymerase chain reaction (PCR). Each PCR reaction contained 1.5 µl DNA (50 nm) template DNA, each primer 1 µl (0.3 µM), 10 µl master (GeneAll, 2 X AmpMaster Taq) and 5 µl ddH₂O in a final reaction volume of 20 ml. An initial denaturation step at 95°C for 5 min was followed by 35 cycles of denaturation at 95°C

for 30 s, annealing at 58.5°C for 1 min and extension at 72°C for 1 min, with a final extension step of 72°C for 7 min. Amplified products were visualized by 2% high resolution agarose gel electrophoresis in 1xTAE buffer, stained ethidium bromide, and photographed under UV machine (ENDURO GDS Gel Documentation System). The ITS sequences of *B. cinerea* isolates were compared and confirmed using GenBank database of NCBI.

2.2. Molecular identification of pathogen isolates by molecular markers

2.2.1. ISSR markers

885, 890, 887, 886 and 880 (Baysal et al., 2009; Baysal et al., 2011; Baysal et al., 2013), 808, 809, 810, 812, 824, 825, 827, 829, 834, 835, 889, 731 and 112 (Polat et al., 2014; Ünlü et al., 2017) primers were used to analysis. Amplifications were carried out in reaction volumes of 15 μ l containing 1 μ l DNA (50 nm) template DNA, 1 μ l dNTP (0.1 mM dNTPs), 1.5 μ l MgCl₂ (2.5 mM MgCl₂), 0.2 μ l Taq (0.6 U Taq DNA polymerase), 2 μ l primer (0.3 μ M primer),

Table 1. Samp	oles list of <i>B. cinere</i>	a collected host, location	on and GPS data (E and N)
---------------	-------------------------------	----------------------------	---------------------------

-					Another nost
E	N	Location	HOST	Isolate ID	in the same
					greenhouse
294111	4086863	Salur Village/Mavikent	Dill	D1	Pepper
402463	4049540	Elikesik Village/Alanya	Dill	D2	Pepper
532835	4238376	Topçular/Muratpaşa	Dill	D3	Dill
531435	4438171	Tarım District/Muratpaşa	Dill	D4	Dill
230532	4018238	Mazılca Mevkii/Demre	Basil	Ba1	Pepper
259167	4032816	Taçbaş Village/Kumluca	Basil	Ba2	Pepper
260539	4021570	Orta District, Seyrek Street/Mavikent	Basil	Ba3	Pepper
234747	4018260	Beymelek/Demre	Basil	Ba4	Pepper
233573	4016620	Beymelek/Demre	Bean	B1	Pepper
402598	4054128	Toslak Village/Kızılca District	Bean	B2	Pepper
259167	4032816	Tacbas Village/Kumluca	Bean	B3	Pepper
258686	4022086	İncekum/Mavikent	Bean	B4	Pepper
259167	4032816	Tacbas Village/Kumluca	Cucumber	C1	Pepper
255219	4026350	Kumluca	Cucumber	C2	Tomato
319390	4087312	Köseler District/Asağı Kocavatak	Cucumber	C3	Pepper
768638	4017359	Güvercinlik-Akkent District/Demre	Cucumber	C4	Pepper
320243	4089662	Yukari Kocavatak	Tomato	T1	Tomato
322078	4089786	Kavaburnu	Tomato	T2	Tomato
402598	4054128	Toslak Village/Kızılca District	Tomato	T3	Tomato
230988	4015897	Yaylakaya/Demre	Tomato	T4	Tomato
323051	4089345	Kavaburnu	Tomato	T5	Tomato
325346	4089693	Candır/Serik	Tomato	T6	Tomato
306802	4092026	Aksu/Antalva	Tomato	T7	Tomato
245219	4020350	Kumluca	Tomato	T8	Tomato
325116	4089311	Candur/Serik	Tomato	T9	Tomato
326548	4093570	Alacami Village/Candır	Tomato	T10	Tomato
323051	4089345	Kavaburnu	Tomato	T11	Tomato
326548	4003570	Candur/Serik	Penner	P1	Penner
320190	4030070	Çahalı/eenik Cakallık/Köseler District/Asağı Kocavatak	Penner	P2	Penner
768028	4018629	Köseler District/Asağı Kocavatak	Penner	P3	Penner
322100	1010020	Kavaburnu	Penner	P/	Penner
760/37	4003003	Vaylakaya/Demre	Depper	D5	Denner
220022	4017030	Yaylakaya/Denne	Pepper	F J D6	Pepper
230900	4015097	Kayahuray	Fepper		Pepper
321030	4009217	Kayabumu Asağı Kacayatak	Eggplant		Feppel
220002	4007000	Aşayı Nocayalak Yaylakaya/Domra	Eggplant		Eggplant
230903	4013009	Taylakaya/Dellile	Eggplant		Egypiant
402474	4054114	Tostak village, Kizilda District/Alariya	Eggplant		Fepper
240219	4019050	Turunçova Tanavlar (Aturata a a	Eggplant	ED	Eggplant
532835	4238376	i opçular/iviuratpaşa	Lettuce	LÏ	
531635	4439071	Tarım District/Muratpaşa	Lettuce		Lettuce
59904	4475836	i opaili/Antaiya	Lettuce	L3	Lettuce
395424	4465988	Gaziler Village/Kepez	Lettuce	L4	Lettuce

1.5 μ I (1 X) PCR buffer and 5.8 μ I ddH₂O. PCR reactions were performed under the following cycle program: initial denaturation step for 3 min at 94°C, followed by 35 cycles at 94°C for 45 s (denaturation), 48°C for 45 s (annealing) and 72°C for 90 s (extension), followed by a final extension step at 72°C for 10 min.

2.2.2. SRAP markers

Twelve primer combination were created using 8 Em (reverse), 9 Me (forward) SRAP primers (Li and Quiros, 2001; Polat et al., 2014). Amplifications were carried out in reaction volumes of 15 µl containing 1 µl DNA (50 nm) template DNA, 1 µl dNTP (0.1 mM dNTPs), 1.5 µl MgCl₂ (2.5 mM MgCl₂), 0.2 µl Taq (0.6 U Taq DNA polymerase), 2 µl primer (0.3 µM primer), 1.5 µl (1 X) PCR buffer and 5.8 µl ddH2O. PCR reactions were performed under the following cycle program: initial denaturation step for 5 min at 94°C, followed by 5 cycles at 94°C for 1 min (denaturation), 35°C for 1 min (annealing) and 72°C for 1 min (extension), followed by 35 cycles at 94°C for 1 min (denaturation), 50°C for 1 min (annealing) and 72°C for 1 min (extension), followed by a final extension step at 72°C for 5 min.

2.3. Gel electrophoresis and data analysis

All PCR products were visualized by 2% high resolution agarose gel electrophoresis in 1xTAE buffer at 115 V for 3-4 h, stained ethidium bromide, and photographed under UV light (ENDURO GDS Gel Documentation System). Amplified bands from each primer were scored as present (1) or absent (0). The bands amplifications showing consistently were considered; smeared and weak bands were discarded from the analysis. Statistical analysis was carried out using the software PAST (Paleontological Statistics) (Hammer et al., 2001). The genetic similarity matrix, neighbor joining (NJ), principle component analysis (PCoA) and principal coordinate analysis (PCO) were constructed based on Dice's coefficient (Dice, 1945). On the other hand, Jaccard similarity index was determined (Jaccard, 1907). Polymorphism rates (Pr) were calculated using following formula. Pr= (number of polymorphic bands/total number of bands in that assay unit) x 100. Polymorphism information content (PIC) values were determined using following formula as described by Smith et al. (1997). PIC= $1-\Sigma$ fi², where fi² is the frequency of the ith allele.

2.4. Detection of transposable elements 'Flipper' and 'Boty'

The primers (F300: 5'-GCA CAA AAC CTA CAG AAG A-3' and F1550: 5'-ATT CGT TTC TTG GAC TGT A-3') used for detection of the Flipper element amplify a 1250-bp product. The presence of the Boty element was tested using another pair of primers (BotyF4: 5'-CAG CTG CAG TAT ACT GGG GGA-3' and BotyR4: 5'-GGT GCT CAA AGT GTT ACG GGA G-3'), which amplify a 510 bp product (Ma and Michailides, 2005, Tanović et al., 2009). Amplifications were carried out in reaction volumes of 25 µl according to Ma and Michailides (2005). All PCR products were visualized by 2% high resolution agarose gel electrophoresis in 1xTAE buffer at 115 V for 3-4 h, stained EZ-vision one, and photographed under UV light (ENDURO GDS Gel Documentation System).

3. Results

After sporulation, Botrytis cinerea isolates collected from 36 vegetable greenhouses were incubated in sterile PDA petri dishes. Singlespore per isolate were developed, selected and morphologically characterized. Whole conidiophores and conidium were grape shape and conidia. Average conidiophore length was 648-2820 µm. Conidial structure was one cell with egg-shape hyaline. Formation of colonies was observed on PDA, after performing at 20°C under light. Aerial mycelium was produced. They were cottony, powdery, compact or radial pattern. Colonies were white, dirty white or greyish white in colour or hyaline then became light grey, dark grey to dark brown after 1 week. For molecular diagnosis of pathogen isolates, the complete ITS region of nuclear ribosomal DNA was sequenced using universal primers ITS1 and ITS4 (White et al., 1990). After morphological and molecular identification, forty-two single-spore isolates of B. cinerea from eight different hosts (dill, basil, bean, cucumber. tomato, pepper, eggplant and lettuce) were used to determine of their genetic variability (Table 1). The genetic diversity within

B. cinerea isolates was evaluated using selected ISSR and SRAP markers. For ISSR analysis, amplifications were successfully achieved with 14 primer pairs, and 9 primer combinations for SRAP analysis.

After screening eighteen ISSR primers, 14 primers produced polymorphic, well-resolved band fragments and only 4 primers (835, 890, 880 and 829) did not give any amplification. When a total of 14 ISSR primers were screened, 108 bands were scored. The number of bands scored per primer ranged from 4 (824) to 11 (827), with a mean of 7.71. Polymorphism rates were ranged from 50% (824) to 100% (812, 810, 808 and 889) (Table 2).

The PIC values for the 14 primers ranged from 0.35 (885) to 0.95 (809), with a mean of 0.68 (Table 2). PIC values were generally used in molecular studies as polymorphism score for a marker locus. As an estimate of the discriminatory power of a locus, PIC values were expressed not only the number of alleles, but also the relative frequencies of those alleles (Smith et al., 1997). PIC values ranged from 0 to 1. At a PIC of 0, the marker had only one allele. If a PIC value was greater than 0.7, it was considered to be highly informative. However, a PIC value of 0.44 was considered to be moderately informative. Markers with greater numbers of alleles tend to have higher PIC values, which were more informative (Hildebrand et al., 1992). Therefore, me3em15, me4em11, me5em7, me6em15, me3em16, me8em15, me9em12 and me10em2 primer combinations could be considered as informative in revealing the genetic diversity and determining genetic variation in isolates of B. cinerea. A total of 70 alleles were generated using the nine of twelve SRAP primer combinations. However, 3 primer combinations (me2em16, me1em13 and me2me9) did not give any amplification. The number of bands scored per primer ranged from 3 (me13em16 and me4em9) to 12 (me3em15), with a mean of 7.77. Polymorphism rates were found 100% (Table 3). The PIC values for the 9 primer combinations ranged from 0.67 (me4em9) to 0.98 (me10em2), with a mean of 0.84 (Table 3). Therefore, 112, 834, 887, 808, 825 and 809 determined to be markers were highly informative markers that could be considered due to its efficiency to determine the genetic diversity and variation in isolates of B. cinerea.

A similarity matrix was calculated using ISSR and SRAP data according to Dice's coefficient Similarity dendrogram (Dice. 1945). was constructed using UPGMA cluster analysis (Figure 1). Cophenetic correlation between ultrametric similarities of tree was found to be high (r=0.93), suggesting the cluster analysis that strongly represent the similarity matrix. Interpretation of the correlation coefficient matrix has been evaluated as follows: r≥0.9 is very good, 0.8≤ r<0.9 is good, 0.7≤r<0.8 is poor and r < 0.7 is very poor (Aka-Kacar et al., 2005).

Cluster analysis (Figure 2), neighbor joining (Figure 3), multivariate PCoA (Figure 3a) and Principal Coornate Analysis (PCO) (Figure 3b) were used to investigate the relationships among isolates by using 14 ISSR and 9 SRAP markers. In the cluster analysis (Figure 1), isolates from lettuces were the most distinct genotypes from the others.

No	Locus	Allel sizes (bp)	/1	Та	Pa	Pr (%)	PIC
1	112	400-500-700-1200-1400-2000-2500-900		8	7	88	0.76
2	731	400-500-600-900-1000-1500-800		7	6	86	0.43
3	834	500-600-800-900-1000-1100-1300-1500-2000		9	7	78	0.85
4	812	400-450-600-900-800-1000-1200-1500-1800		9	9	100	0.59
5	810	500-650-700-1100-1300		5	5	100	0.56
6	886	400-500-650-900-800-1000-1200-1300		8	6	75	0.66
7	887	400-500-800-900-1000-1200-1300-600-700		9	7	78	0.86
8	808	600-650-700-800-900-1000-1200-1500		8	8	100	0.75
9	885	500-600-700-900-1300-1500		6	5	83	0.35
10	889	550-700-800-900-1100-1200-1600		7	7	100	0.53
11	824	800-1300-1000-1600		4	2	50	0.83
12	825	400-550-750-900-1000-1200-1600		7	6	86	0.74
13	827	500-600-700-750-800-900-1000-1100-1300-1400-1500		11	10	91	0.69
14	809	400-800-900-350-500-600-1000-1100-1200-1500		10	7	70	0.95
			Total	108	92	-	-
			Mean	7.71	6.65	84.60	0.68

Table 2. Diversity statistics for 14 inter simple sequence repeats (ISSR) primer studied in 42 B. cinerea isolates

Ta: Total allel, Pa: Polimorphic allel, Pr: Polymorphism rates, PIC: Polymorphism information content

Polat et al. / Derim 35(2):121-134

Table 3. Diversity statistics for 9 sequence related am	plified polymorphism (SRAP) primer combinations studied in
B. cinerea isolates from different locations and host	plants

NI-	1		Τ.	D-	$D = \langle 0 \rangle$	
INO	Locus	Allei sizes (bp)	Ta	Ра	Pr (%)	PIC
1	me3em15	150-180-250-300-400-500-600-800-950-1000-1200-1500	12	12	100	0.84
2	me3e16	500-800-1100	3	3	100	0.73
3	me4em9	220-450-1000	3	3	100	0.67
4	me4em11	350-400-500-600-700-1200-1300-1600-2400	9	9	100	0.89
5	me5em7	200-300-400-500-600-700-900-1000-1100-1200-1800	11	11	100	0.85
6	me6em15	150-180-300-600-700-800-1000-1300	8	8	100	0.84
7	me8em15	150-250-400-800-1000-1200-2000	7	7	100	0.83
8	me9em12	280-300-400-450-600-700-900-1300-1700	9	9	100	0.95
9	me10em2	250-150-300-500-700-800-900-1500	8	8	100	0.98
		Total	70	70	-	-
		Mean	7.77	7.77	100	0.84

Ta: Total allel, Pa: Polimorphic allel, Pr: Polymorphism rates, PIC: Polymorphism information content

Similarity

Polat et al. / Derim 35(2):121-134

Figure 2. Neighbor joining of the *B. cinerea* isolates from different locations and host plants using UPGMA method obtained from ISSR and SRAP markers

Figure 3. a) Principal Component Analysis (PCoA), b) Principal Coordinate Analysis (PCO) based on the Dice's genetic distances

However, L1-L2 and L3-L4 located within the same cluster were very similar to each other with 90-92%, respectively. In tomato isolates, T10 and T11 accessions showed divergence from the others with a high level of similarity (0.86). Neighbor joining analysis grouped all samples in six main clusters (Figure 2). Neighbor joining analysis has been proposed for reconstructing phylogenetic trees from evolutionary distance data. The principle of this method is to find pairs of neighbors that minimize the total branch length at each stage clustering of neighbors (Saitou and of Nei, 1987). As shown in Figure 2, clustering raised from A to G in the neighborhood. Therefore, isolates obtained lettuces (cluster A) were found the most distinct genotypes from the other isolates collected from vegetables. All of tomatoes isolates were took place cluster D and G. However, C2 isolate obtained from cucumber placed in the D cluster and involved in the same branch with T8 isolate.

C2 isolate from cucumbers and T8 isolate from tomatoes were grown in the same greenhouse. All of isolates from the eggplants and peppers were in B and C cluster. While D2, D3 and D4 isolates obtained from dills have been in the cluster B, isolate D1 is in the cluster F with Ba1 at the same branch. D3 and D4 isolates from dill in greenhouses, D1 and D2 isolates were from dill in the peppers with the same greenhouses. Moreover, D1 and Ba1 isolates were obtained from nearby regions. On the other hand, all of isolates from basils and beans were in the cluster F. The isolate from pepper was obtained from same fields where bean and cucumber had cultivated before, this case was not valid only for isolate C2. PCoA and PCO, scattered plot reporting the first two components, describing all analyzed isolates are given in Figure 3. The main two coordinated analysis explained 80 and 70% variability, respectively. PCoA and PCO analysis were used with together due to PCO was necessarily inferior to PCoA. Because each point was exactly placed where it ought to be in PCoA, whereas in PCO each point was only approximated based on a best-fit model of the dissimilarities (Podani and Miklos, 2002). PCO were shown Likewise, results of dissimilarities of isolates from different hosts. As seen in NJ and dendrogram, all isolates of lettuce placed in the furthest point in the diagram of PCO analyse. On the other hand,

isolate P2, P3 and P4 were outside of the ring. Although isolate P1 was in same cluster with other samples that it placed near to border line. P5 and P6 isolates were in same cluster. This result can be associated with close regions of collected samples that P2 and P3 isolates has derived from Kayaburnu which is close distriction to Kocayatak. Moreover, P1 isolate was derived from Serik which is near to these regions. These results show isolate P5 and P6 from Demre were genetically different according to regions.

Finally, the genetic diversity among isolates was also visualized by Jaccard analysis. Jaccard similarity and distance indices values ranged from 0 to 0.65 (Figure 4). Their ranged from 0 (no overlap) to 1 (complete congruence). While selecting convenient evaluation method, Jaccard is numerically sensitive to mismatch when there is reasonably strong overlap. Dice high for the same pair of values are segmentations. The Jaccard distance, which measures dissimilarity between sample sets, is complementary tool to the Jaccard coefficient (Levandowsky and Winter, 1971). While Dice's coefficient gives attention to bands showing matches, Jaccard approaches has importance to determine of differentiation (Carriço et al., 2005). Transposable elements (Flipper and Boty) were detected among isolates from all the hosts. The presence or absence of two transposable elements was tested in every strain using the PCR reaction. Flipper element was determined with transposable 1250 bp product in all of isolates, while none of the isolates amplified the expected 510 bp product corresponding to the Boty element.

4. Discussion

B. cinerea and its sexual form B. fuckeliana Whetzel comprises 22 species and one hybrid (Yohalem et al., 2003). Recent studies have shown B. cinerea that a remarkable genetic differences and morphological variability are present (van Der Vlugt-Bergmans et al., 1993; Diolez et al., 1995; Mirzaei et al., 2007). Its classification based on serological method 1977) besides morphological (Jarvis, and has not provided characteristics cultural contributions to taxonomy in this genus (Jarvis, 1980). For last decades, DNA-based molecular techniques have become

Polat et al. / Derim 35(2):121-134

	D1	D2	2	Ba1	Ba2	Ba3	Ba4	B1	B2	B3	B4	C1	C2	C3	C4	T1	T2	T3	T4	T5	T6	T7	Т8	Т9	T10	T11	P1	P2	P3	P4	P5	P6	E1	E2	E3	E4	E5	L1	L2	L3	L4	D3
D1	1,00																																									
D2	0,23	1,	00																																							
Ba1	0,59	0,	26	1,00																																						
Ba2	0,40	0,	21	0,53	1,0	D																																				
Ba3	0,36	0,	19	0,35	0,3	9 1,00)																																			
Ba4	0,48	0,	29	0,42	0,3	7 0,55	5 1,00																																			
B1	0,51	0,	25	0,40	0,3	7 0,47	0,56	1,00																																		
B2	0,50	0,	26	0,46	0,5	3 0,54	0,60	0,61	1,00																																	
B3	0,49	0,	22	0,52	0,4	5 0,47	0,36	0,33	0,43	1,00																																
B4	0,44	0,	29	0,48	0,4	7 0,55	0,54	0,50	0,56	0,52	1,00																															
C1	0,41	0,	28	0,49	0,4	3 0,52	2 0,51	0,47	0,53	0,53	0,71	1,00																														
C2	0,29	0,	14	0,31	0,3	9 0,39	0,31	0,33	0,37	0,31	0,42	0,40	1,00																													
C3	0,48	0,	24	0,45	0,4	3 0,39	0,49	0,58	0,52	0,42	0,51	0,56	0,34	1,00																												
C4	0,51	0,	28	0,48	0,40	0,38	3 0,44	0,65	0,49	0,37	0,52	0,51	0,34	0,56	1,00																											
T1	0,39	0,	19	0,34	0,3	5 0,41	0,37	0,42	0,45	0,37	0,37	0,39	0,24	0,37	0,45	1,00														_												
T2	0,28	0,	18	0,29	0,34	4 0,34	0,30	0,36	0,36	0,25	0,39	0,34	0,44	0,32	0,39	0,44	1,00																									
Т3	0,39	0,	24	0,39	0,40	0,43	3 0,42	0,42	0,44	0,38	0,48	0,43	0,23	0,43	0,43	0,45	0,45	1,00																								
T4	0,39	0,	28	0,37	0,4	1 0,46	6 0,50	0,48	0,49	0,40	0,44	0,51	0,23	0,43	0,43	0,41	0,34	0,60	1,00																							
T5	0,44	0,	33	0,35	0,3	3 0,46	6 0,54	0,65	0,53	0,29	0,50	0,49	0,32	0,49	0,55	0,43	0,35	0,43	0,55	1,00																						
T6	0,33	0,	34	0,32	0,3	7 0,48	3 0,42	0,43	0,44	0,40	0,57	0,54	0,31	0,39	0,47	0,38	0,39	0,45	0,51	0,56	1,00																					
T7	0,38	0.	26	0,40	0,4	3 0,48	3 0,44	0,53	0,54	0,38	0,49	0,52	0,35	0,43	0,45	0,41	0,32	0,40	0,47	0.58	0.53	1,00								_												
T8	0,30	0.	24	0,29	0,3	5 0,38	3 0,35	0,41	0,39	0.28	0,47	0,42	0,52	0,32	0.39	0,36	0,44	0,31	0,37	0,46	0,42	0,41	1,00							_												
Т9	0,38	0,	27	0,36	0,4	6 0,45	5 0,47	0,50	0,60	0,42	0,50	0,47	0,36	0,48	0,39	0,41	0,36	0,44	0,52	0,56	0,55	0,65	0,45	1,00																		
T10	0,27	0,	18	0,29	0,3	5 0.32	2 0,35	0,43	0,42	0.25	0,37	0,34	0,43	0,35	0.37	0,37	0,49	0,34	0,34	0,41	0,36	0.38	0,51	0,42	1,00					_												
T11	0,24	0,	20	0,25	0,3	6 0,29	0,31	0,39	0,40	0,23	0,35	0,35	0,42	0,33	0,33	0,33	0,45	0,30	0,35	0,38	0,36	0,42	0,55	0,44	0,79	1,00																
P1	0,27	0,	15	0,32	0,2	7 0,22	2 0,18	0,25	0,23	0,28	0,23	0,28	0,22	0,23	0,26	0,22	0,25	0,24	0,24	0,19	0,25	0,26	0,26	0,25	0,27	0,26	1,00			_												
P2	0,26	0,	17	0,25	0,1	5 0,12	2 0,20	0,27	0,19	0,14	0,16	0,15	0,10	0,21	0.23	0,18	0,17	0,21	0,23	0,23	0,15	0,19	0,16	0.20	0,17	0,15	0.39	1,00														
P3	0,21	0,	14	0,15	0,20	0,14	0,22	0,31	0,22	0,14	0,18	0,17	0,11	0,16	0,23	0,26	0,23	0,19	0,23	0,21	0,21	0,21	0,22	0,20	0,25	0,26	0,24	0,36	1,00													
P4	0,23	0,	09	0,25	0,2	1 0,13	8 0,19	0,24	0,19	0,19	0,21	0,20	0,14	0,21	0,27	0,22	0,21	0,20	0,16	0,16	0,18	0,17	0,15	0,19	0,19	0,14	0,23	0,32	0,35	1,00							_					
P5	0,36	0,	16	0,34	0,3	2 0.29	0,34	0,42	0,37	0,29	0,35	0.33	0,22	0,41	0,41	0,44	0,29	0,37	0.37	0,39	0.29	0,40	0,26	0.39	0.26	0,25	0.19	0,19	0,20	0.30	1,00											
P6	0,33	0,	18	0,33	0,3	3 0,33	3 0,31	0,40	0,33	0,32	0,34	0,32	0,28	0,37	0,38	0,40	0,36	0,33	0,33	0,38	0,32	0,42	0,34	0.36	0,32	0,33	0.25	0,22	0,20	0.26	0,54	1,00										
E1	0.25	0.	22	0.23	0.3	0.21	0.26	0.28	0.31	0.24	0.36	0.32	0.29	0.38	0.32	0.24	0.33	0.27	0.24	0.26	0.33	0.23	0.28	0.28	0.36	0.37	0.21	0.18	0.22	0.22	0.27	0.32	1.00			_	_					
E2	0,26	0.	23	0,28	0,3	3 0.35	5 0,28	0,31	0,34	0,38	0,42	0,44	0,26	0,39	0.37	0,32	0,29	0,33	0,39	0,28	0,45	0,38	0,31	0,38	0,28	0,31	0.26	0,12	0,18	0,17	0,37	0,33	0,44	1,00			_					
E3	0,32	0.	20	0,31	0,4	3 0,40	0,28	0,37	0,36	0,42	0,44	0,41	0,32	0,43	0,41	0,31	0,33	0,36	0,38	0,34	0,43	0,43	0,33	0.38	0,27	0,31	0,24	0,14	0,15	0,17	0,37	0,53	0,38	0,64	1,00							
E4	0.33	0.	23	0.41	0.4	1 0.35	5 0.30	0.39	0.42	0.38	0.44	0.44	0.27	0.46	0.54	0.43	0.34	0.37	0.37	0.39	0.43	0.49	0.31	0.42	0.32	0.35	0.24	0.16	0.16	0.19	0.46	0.46	0.40	0.49	0.55	1.00	_					
E5	0.21	0.	23	0.24	0.2	3 0.19	0.26	0.28	0.27	0.24	0.31	0.32	0.21	0.30	0.28	0.19	0.27	0.24	0.26	0.22	0.27	0.27	0.24	0.26	0.26	0.30	0.23	0.14	0.24	0.16	0.21	0.28	0.40	0.37	0.30	0.34	1.00					
L1	0,08	0.	10	0,10	0,0	9 0,14	0,07	0.03	0,10	0,15	0,14	0,13	0,06	0,06	0,05	0,09	0,09	0,10	0,10	0,00	0,15	0,07	0,04	0,05	0,01	0,03	0,11	0,06	0,05	0,05	0,02	0,06	0,12	0,21	0,16	0,11	0,09	1,00				
L2	0.08	0.	10	0.11	0.1	1 0.13	3 0.07	0.03	0.11	0.17	0.15	0.13	0.05	0.06	0.05	0.09	0.07	0.11	0.11	0.00	0.13	0.06	0.05	0.06	0.03	0.04	0.11	0.06	0.08	0.06	0.02	0.04	0.12	0.22	0.14	0.14	0.11	0.82	1.00			
L3	0.07	0	09	0.10	0,1	2 0.14	0.07	0.03	0.10	0.16	0.14	0,13	0.08	0.06	0.05	0.07	0.08	0,10	0.10	0.00	0.14	0.08	0.06	0.07	0.03	0.05	0.13	0.05	0.07	0.05	0.02	0.05	0.11	0.22	0.17	0.11	0.13	0.67	0.70	1.00		
L4	0.07	0.	09	0,11	0.1	2 0.16	6 0.07	0.03	0.10	0.20	0.15	0,13	0,11	0,06	0,04	0,08	0,09	0,09	0.09	0,00	0,13	0,08	0,10	0,08	0,04	0,06	0.12	0.05	0,09	0,05	0,02	0,07	0,14	0,23	0,17	0,12	0,14	0.63	0,65	0,83	1,00	
D3	0.35	0	35	0.26	0.1	3 0.10	0.28	0.28	0.26	0.20	0,24	0,23	0.14	0,29	0,35	0.27	0,16	0,22	0,24	0,35	0,25	0.32	0,24	0.27	0,16	0,15	0,16	0,16	0,12	0,11	0.24	0.21	0,20	0,19	0,21	0.27	0,13	0.02	0.02	0.02	0.02	1.00
D4	0.27	0.	40	0,26	0.2	0.19	0.23	0.27	0.21	0.18	0.26	0,24	0,14	0,24	0,34	0,23	0,19	0,18	0.20	0,32	0,23	0,26	0,24	0,22	0,16	0,14	0,18	0.13	0,10	0,10	0,21	0,21	0,19	0,19	0,22	0,24	0,16	0,02	0,02	0,02	0,02	0,59
Fig	gur	е	4	. J	ac	ca	rd a	ana	aly	ze	of t	the	В.	ci	nei	rea	is	ola	ate	s fi	on	n d	liffe	ere	ntl	00	ati	ons	s a	nd	hc	st	pla	int	S							

increasingly popular and important to detection of genetic differences. Within molecular tools, gene markers are also effective, and they identify an abundance of genetic linkage between identifiable locations within a chromosome which is able to be repeated for verification (Doveri et al., 2008). Molecular characterization and understanding of the population structure of pathogenic fungi are important for improvement of effective diseasecontrol strategies (Malvick and Percich, 1998).

In previous studies, genetic diversity of *B. cinerea* and the level of resistance to the

fungicides were investigated using molecular markers. Moreover, the resistance to the fungicide fenhexamid level of the pathogen from different hosts (grape, tomato, cucumber, onion, strawberry, gerbera and rose) were analyzed using molecular markers in Tunisia (Dorsaf Ben and Hamada, 2005). Ma and Michailides (2005) have investigated population sensitivity to the hydroxyanilide, fenhexamid fungicides of *B. cinerea* using transposable elements, DNA fingerprinting generated by microsatellite primed-polymerase chain reaction (MP-PCR), and were tested on 234 collected from fig, grape, kiwifruit, isolates

pea, and squash in California. Botrytis cinerea is a common species and inhabited on a wide range of host plants as a parasite or saprophyte (Domsch et al., 1993). Improvement of resistance variety to disease offers excellent perspectives for improved disease control. However, breeding for resistance variety against B. cinerea has been difficult in most crops except tomato. Recently, there has been substantial advance in conventional breeding for grey mold resistance in tomato (ten Have et al., 2007). Wild genotype S. habrochaites (LYC4) was used for resistance to B. cinerea in to S. lycopersicum (Finkers et al., 2007). However, up to now, there is no stated any tomato cultivars exhibiting resistance to gray mold in greenhouses (Ingram and Meister, 2006).

Characterization of population structure is important to development of disease-control strategies. Classification of Botrytis genus is largely based on morphological and cultural characteristics (Hennebert, 1973; Jarvis, 1977). Botrytis species Merely, many are morphologically similar and growth conditions of pathogen that significantly influence variation 2004). (Beever Weeds, and Although morphological characters are so far suggested in identification of Botrytis cinerea, in recent years molecular markers have been suggested (White et al., 1990; Rigotti et al., 2002). In our study, the complete ITS (Internal Transcribed Spacer) region of nuclear ribosomal DNA was sequenced as previously described (Paul, 2000) and used to molecular diagnosis using universal primers ITS1 and ITS4 (White et al., 1990). ITS1 and ITS4 primers have been suggested to identify of B. cinerea (Kaur, 2015). Mirzaei et al. (2007) have carried out taxonomical studies using specific primers on the genus Botrytis and these primers were also effective in discrimination of isolates from roses in greenhouses at central regions of Iran (Khazaeli et al., 2010). In assessing of the B. cinerea population variability at molecular level, they also used dominant markers such as RAPD, AFLP and ISSR. In Korea, analysis of genetic variation in B. cinerea isolates derived from 9 different host (cucumber, gerbera, ginseng, grape, kiwi, pear, tomato and strawberrv) were investigated usina 29 decaprimers RAPD markers on 29 isolates of B. cinerea isolated from table grapes and other crops in Chile (Choi et al., 1998). Any single

primer was not reported to understand differentiation of B. cinerea's the host or oriain deographical (Thompson and Latorre, 1999). In another studv. RAPD molecular marker were performed on 34 fungal strains isolated from strawberry and other host plants to detect polymorphism (Rigotti et al., 2002). Fourty-four isolates of B. cinerea collected from six greenhouses were analyzed by RAPD and AFLP to determine the genetic relationships of B. cinerea populations in Almería, Spain. Although polymorphisms were more frequently detected per primer with AFLP than with RAPD, polymorphisms obtained with RAPD were more frequently per loci than AFLP (Moyano et al., 2003). Seventy nine isolates of B. cinerea from different host plants and different locations of India and Nepal have been understand of their genetic checked to variability on the basis of geographical regions with defined groups according to cluster analysis based on RAPD markers (Kumari et al., 2014). RAPD and ISSR molecular markers were used to analyze isolates from grapes and fruits to compare the other genetic polymorphism and evolutionary relationships between the two groups (Group A and Group B). Group A contained strains producing conidiospores quickly and numerously, group B were isolates which could hardly produce conidiospores on PDA. Using RAPD-PCR method, E17 primer could amplify a 600-700 bp band in all of the tested isolates and this primer could be used and suggested as molecular marker to follow of B. cinerea's genetic diversity. ISSR cluster analysis demonstrated genetic differences among strains from two groups (Cui, 2013). Multilocus profiles generated by co-dominant molecular markers are highly suited to determine population structure and evolutionary biology in plant pathogenic fungi (Milgroom, 1996). SSR markers were also developed for B. cinerea and revealed a high level of polymorphism among isolates from various hosts, including grapevine (Fournier et al., 2002). Leyronas (2015) used SSR marker to determinate of genetic differences on isolates from tomatoes and lettuces. Obtained results suggest an absence of clear host specialization of B. cinerea on tomato and lettuce that similar results have been reported by Choi et al. (2003), Kumari et al. (2014) and Asadollahi et al. (2013). Most of genetic studies in Botrytis genus have been carried out on *B. cinerea*. Choi et al. (2003)

reported high level of genetic variation among could population that be caused bv heterokaryosis among preexisting molecular phenotypes. MP-PCR data set were consistent with absence of sexual recombination in sampled populations of this pathogen (Ma and Michailides, 2005). Asadollahi et al. (2013) suggest the occurrence of host-specific, sympatric divergence of generalist phytoparasites in perennial hosts.

In our study, B. cinerea isolates from some vegetables crops cultivated in greenhouses were characterized using combined dominant and co-dominant SRAP ISSR molecular markers. We show that genetic diversity in these vegetable isolates is high and all of them were identical. Host specificity of B. cinerea from different hosts has been affected with several parameters depending on phenology of the hosts, spores migration (Asadollahi et al., 2013). Isenegger et al. (2008)'s results highlighted the potential threat of host resistance breakdown as а result of considerable genetic diversity, genotype flow and the evolutionary potential of B. cinerea. On the other hand, the sudden change of fungal observed following fungicide population treatment supports the hypothesis that a change of the B. cinerea population in the air, in the form of vegetative spores, could result in an abrupt change of B. cinerea populations on hosts. However, eventual host preferences of B. cinerea variants may also play a role (Asadollahi et al., 2013).

To the best of our knowledge, there is no study which focused on transposable elements in isolates collected from Turkey. The present study has shown that *Flipper* type is common in cinerea population obtained from all В. greenhouses-grown vegetable in Turkey. On the other hand, none of isolates has Boty type. Many studies have examined. Boty transposable elements were detected in Europe America and Australia. while Flipper have transposable elements alone been isolated only in southern and Eastern Europe, Tunisia and Bangladesh (Vercesi et al., 2014). Under the present experimental conditions, this subgroup was dominant. More studies are needed to determine if this means that Boty and Flipper is invading the vacuma group, or these strains belong to another subpopulation of B. cinerea (Tanović et al., 2009).

5. Conclusion

The rapidly genetic changes on pathogen population can be associated with a result of different fungicide applications leading to changes in host preferences of B. cinerea enforcing formation of variants in our cultivation fields. However further studies based on specific gene sequences and tracking on mutations are necessary to understand the major reason for these genetic diversity on pathogen at our region. As a pioneer study, to the best of our knowledge, there is no study related to genetic discrimination of B. cinerea isolates using ISSR and SRAP molecular markers on *B. cinerea*. We employed different ISSR and SRAP markers to study the population genetics of B. cinerea isolates from different hosts for major districts in Turkey. Moreover, transposable elements (Flipper and Boty) were detected among isolates from all the hosts, and Boty transposable elements have never been observed in greenhouse vegetable production in Turkey.

References

- Aka-Kacar, Y., Demirel, A., Tuzcu, O., Yesiloglu, T., Ulas, M., & Yildirim, B. (2005). Preliminary results on fingerprinting lemon genotypes tolerant to Mal Secco (*Phoma tracheiphila* Kanc. et Ghik) disease by RAPD markers. *Biologia Bratislava*, 60(3):295-300.
- Angelini, R.M., Rotolo, C., Masiello, M., Pollastro, S., Ishii, H., & Faretra, F. (2012). Genetic analysis and molecular characterisation of laboratory and field mutants of *Botryotinia fuckeliana* (*Botrytis cinerea*) resistant to Qol fungicides. *Pest Management Science*, 68(9):1231-1240.
- Asadollahi, M., Fekete, E., Karaffa, L., Flipphi, M., Árnyasi, M., Esmaeili, M., Váczy, K.Z., & Sándor, E. (2013). Comparison of *Botrytis cinerea* populations isolated from two open-field cultivated host plants. *Microbiological Research*, 168(6):379-388.
- Baysa,I Ö., Karaaslan, Ç., Siragusa, M., Allesandro, R., Carimi, F., De Pasquale, F., & Teixeira Da Silva, J.A. (2013). Molecular markers reflect differentiation of *Fusarium oxysporum* forma specials on tomato and forma on eggplant. *Biochemical Systematics and Ecology*, 47:139-147.
- Baysal, Ö., Mercati, F., Ikten, H., Çetinkaya Yıldız, R., Carimi, F., Aysan, Y., & Teixeira da Silva, J.A. (2011). Clavibacter michiganensis subsp. michiganesis: Tracking strains using their genetic differentiations by ISSR markers in Southern Turkey. Physiological and Molecular Plant Pathology, 75(3):13-119.

- Baysal, Ö., Siragusa, M., İkten, H., Polat, İ., Gümrükcü, E., Yiğit, F., Carimi, F., & Teixeira da Silva, J.A. (2009). *Fusarium oxysporum* f.sp. *lycopersici* races and their genetic discrimination by molecular markers in West Mediterranean region of Turkey. *Physiological and Molecular Plant Pathology*, 74(1):68-75.
- Beever, R.E., & Weeds, P.L. (2004). Taxonomy and genetic variation of *Botrytis* and *Botryotinia*. pp. 29-52 In: Elad Y, Williamson B, Tudzynski P, Delen N, (eds). Botrytis, Biology, Pathology and Controls. Kluwer Academic Publisher. Netherland.
- Brent, K.J., & Hollomon, D.W. (1998). Fungicide resistance: the assessment of risk. FRAC Monograph No. 2, Brussels.
- Carriço, J.A., Pinto, F.R., Simmas, C., Nunes, S., Sousa, N.G., Frazao, N., Lencastre, H., & Almeida, J.S. (2005). Assesment of band-based similarity coefficient for automatic type and subtype classification of microbial isolates analyzed by pulse field gel electrophoresis. *Journal of Clinical Microbiology*, 43(11):5483-5490.
- Choi, I.S., Kim, D.H., Lee, C.W., Kim, J.W., & Chung, Y.R. (1998). Analysis of genetic variation in *B. cinerea* isolates using Random Amplified Polymorphic DNA markers. *Journal of Microbiology and Biotechnology*, 8(5):490-496.
- Cui, Z.J. (2013). Identification of sporulational group and analysis of genetic polymorphism of *Botrytis cinerea*. Master Thesis, China.
- Datta, D., Gupta, S., Chaturvedi, S.K., & Nadarajan, N. (2011). Molecular markers in crop improvement. Indian Institute of Pulses Research, Kanpur - 208 024.
- Dice, L.R. (1945). Measures of the amount of ecologic association between species. *Ecology*, 26:297-302.
- Diolez, A., Marches, F., Fortini, D., & Brygoo, Y. (1995). *Boty*, a long-terminal-repeat retro-element in the phytopathogenic fungus *Botrytis cinerea*. *Applied and Environmental Microbiology*, 61(1):103-108.
- Domsch, K.H., Gams, W., & Anderson, T. (1993). Compendium of Soil Fungi. New York, Academic Press.
- Dorsaf Ben, A., & Hamada, W. (2005). Genetic diversity of some Tunisian *Botrytis cinerea* isolates using molecular markers. *Phytopathologia Mediterranea*, 44:300-306.
- Doveri, S., Lee, D., Maheswaran, M., & Powell, W. (2008). Molecular markers: History, features and applications. In Principles and Practices of Plant Genomics, Volume 1, C.K.a.A.G. Abbott, ed. (Enfield, USA: Science Publishers), pp. 23-68.
- Elad, Y., Williamson, B., Tudzynski, P., & Delen, N. (2007). Chapter 1: Botrytis spp. and diseases they cause in agricultural systems-an introduction. Y. Elad et al. (eds.), Botrytis: Biology, Pathology and Control, 1-8. © 2004

Kluwer Academic Publishers. Printed in the Netherlands.

- FAO, (2014). Food and agriculture organisation of the United Nations. www.fao.org/faostat Accessed date:12 December 2016.
- Finkers, R., van den Berg, P., van Berloo, R., ten Have, A., van Heusden, A.W., van Kan, J.A.L., & Lindhout, P. (2007). Three QTLs for *Botrytis cinerea* resistance in tomato. *Theoretical and Applied Genetics*, 114(4):585-593.
- Fournier, E., Giraud, T., Loiseau, A., Vautri, D., Estoup, A., Solignac, M., Cornuet, J.M., & Brygoo, Y. (2002). Characterization of nine polymorphic microsatellite loci in the fungus *Botrytis cinerea* (Ascomycota). *Molecular Ecology Notes*, 2:253-255.
- Hammer, R., Harper, D.A.T., & Ryan, P.D. (2001). PAST: Paleontological statistics software package for education and data analysis. *Palaeontol, Electronica,* 4(1):9.
- Hennebert, G.L., (1973). Botrytis and botrytis-like genera. *Persoonia*, 7: 183-204.
- Hildebrand, C.E., Torney, D.C., & Wagner, R.P. (1992). Mapping the genome. Informativeness of polymorphic DNA markers. *Los Alamos Science*, 20:100-102.
- Ingram, D.M., & Meister, C.W. (2006). Managing Botrytis Gray Mold in Greenhouse Tomatoes Using Traditional and Bio-Fungicides. Plant Management Network.
- Isenegger, D.A., Macleod, W.J., Ford, R., & Taylor, P.W.C. (2008). Genotypic diversity and migration of clonal lineages of Botrytis cinerea from chickpea fields of Bangladesh inferred by microsatellite markers. *Plant Pathology*, 57(5):967-973.
- Jaccard, P. (1907). La distribution de la flore dans la zone alpine. *Revue générale des sciences pures et appliqués*, 18:961-967
- Jarvis, J.W. (1980). The Biology of Botrytis. Edited by J.R. Coley-Smith, K. Verhoeff, W.R. Jarvis. Taxonomy. Academic Press. A Subsidiary of Harcourt Brace Jovanovich, Publishers. London New York Toronto Sydney San Francisco.
- Jarvis, W.R. (1977). *Botryotinia and Botrytis* species: Taxonomy, Physiology and Pathogenicity, A guide to the Literature. Monograph No. 15, Canada Department of Agriculture, Ottawa, Canada.
- Jensen, M.H. (2002). Controlled environment agriculture in deserts tropics and temperate regions – A world review. Acta Horticulturae, 578(1):19-25.
- Kaur, G. (2015). Variability and management studies of *Botrytis Cinerea* causing grey mould in gladiolus. PhD Thesis. Dr Yashwant Singh Parmar University, India.
- Kecskeméti, E., Brathuhn, A.,Kogel, K.H., Berkelmann-Löhnertz, B., & Reineke, A. (2014). Presence of transposons and mycoviruses in Botrytis cinerea isolates collected from a German

grapevine growing region. *Journal of Phytopathology*, 162(9):582-595.

- Khazaeli, P., Zamanizadeh, H., Morid, B., & Bayat, H. (2010). Morphological and molecular identification of Botrytis cinerea causal agent of gray mold in rose greenhouses in central regions of Iran. International Journal of Agricultural Science and Research, 1(1):19-24.
- Kumari, S., Tayal, P., Sharma, E., & Kapoor, R. (2014). Analyses of genetic and pathogenic variability among *Botrytis cinerea* isolates. *Microbiological Research*, 169(11): 862-872.
- Levandowsky, M., & Winter, D. (1971). Distance between sets. *Nature*, 234(5):34-35.
- Leyronas, C., Byrone, F., Duffaud, F., Troulet, C., & Nicot, P.C. (2015). Assessing host specialization of *Botrytis cinerea* on lettuce and tomato by genotypic and phenotypic characterization. *Plant Pathology*, 64(1):119-127.
- Li, G., & Quiros, C.F., (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. *Theoretical Applied Genetic*, 103:455– 461.
- Ma, Z., & Michailides, T.J. (2005). Genetic structure of *Botrytis cinerea* populations from different host plants in California. *Plant Disease*, 89(10): 1083-1089.
- Malvick, D., & Percich, J. (1998). Genotypic and pathogenic diversity among pea-infecting strains of *Aphanomyces euteiches* from the central and western United States. *Phytopathology*, 8889:915-921.
- Milgroom, M.G. (1996). Recombination and the multilocus structure of fungal populations. *Annual Review of Phytopathology*, 34:457-77.
- Mirzaei, S., Goltapeh, E.M., & Shams-Bakhsh, M. (2007). Taxonomical studies on the genus *Botrytis* in Iran. *Journal of Agricultural Technology*, 3(1):65-76.
- Moyano, C., Alfonso, C., Gallego, J., Raposo, R., & Melgarejo, P. (2003). Comparison of RAPD and AFLP marker analysis as a means to study the genetic structure of *Botrytis cinerea* populations. *European Journal of Plant Pathology*, 109(5):515-522.
- Paul, B. (2000). ITS1 region of rDNA of *Pythium* megacarpum sp. nov., its taxonomy and its comparison with related species. *FEMS Microbiology Letters*, 186(2):229-233.
- Podani, J., & Miklós, I. (2002). On the horseshoe effect in ecological ordinations. 45th Symposium of the International Association for Vegetation Science, March 3-8, 2002, Porto Alegre, Brazil
- Polat, İ., Baysal, Ö., Mercati, F., Kitner, M., Cohen, Y., Lebeda, A., & Carimi, F. (2014). Characterization of *Pseudoperonospora cubensis* isolates from Europe and Asia using ISSR and SRAP molecular markers. *European Journal of Plant Pathology*, 139(3):641-653.

- Rigotti, S., Gindro, K., Richter, H., & Viret, O. (2002). Characterization of molecular markers for specific and sensitive detection of *Botrytis cinerea* Pers.: Fr. in strawberry (*Fragaria X ananassa* Duch.) using PCR. *FEMS Microbiology Letters*, 209(2):169-174.
- Rosslenbroich, H.J., & Stuebler, D. (2000). *Botrytis cinerea* – history of chemical control and novel fungicides for its management. *Crop Protection*, 19(8-10):557-61.
- Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Molecular Biology and Evolution*, 4(4):406-425.
- Schlötterer, C. (2004). The evolution of molecular markers-just a matter of fashion? *Nature Reviews Genetics*, 5(1):63-69.
- Shao, W., Ren, W., Zhang, Y., Hou, Y., Duan, Y., Wang, J., Zhou, M., & Chen, C. (2015). Baseline sensitivity of natural populations and characterization of resistant strains of *Botrytis cinerea* to fluazinam. *Australasian Plant Pathology*, 44(4):375-383.
- Smith, J.S.C., Chin, E.C.L., Shu, H., Smith, O.S., Wall, S.J., Senior, M.L., Mitchel, S.E., Kresorich, S., & Tiegle, J. (1997). An evaluation of the utility of SSR loci as molecular markers in maize (*Zea maysL*.): comparisons with data from RFLPs and pedigree. *Theoretical and Applied Genetics*, 95(1-2):163-173.
- Sun, H.Y., Wang, H.C., Chen, Y., Li, H.X., Chen, C.J., & Zhou, M.G. (2010). Multiple resistance of *Botrytis cinerea* from vegetable crops to carbendazim, diethofencarb, procymidone, and pyrimethanil in China. *Plant Disease*, 94(5):551-556.
- Tanović, B., Delibašić, G., Milivojević, J., & Nikolić, M. (2009). Characterization of *Botrytis cinerea* isolates from small fruits and grapevine in Serbia. *Archives of Biological Sciences*, 61(3):419-429.
- ten Have, A., van Berloo, R., Lindhout, P., & van Kan, J.A.L. (2007). Partial stem and leaf resistance against the fungal pathogen *Botrytis cinerea* in wild relatives of tomato. *European Journal of Plant Pathology*, 117(2):153-166.
- Thompson, J.R., & Latorre, B.A. (1999). Characterization of *Botrytis cinerea* from Table Grapes in Chile Using RAPD-PCR. *Plant Disease*, 83(12):1090-1094.
- TUIK, (2014). Turkish Statistical Institute. www.turkstat.gov.tr. Accessed date: 12 December 2016.
- Tuzel, Y., & Leonardi, C. (2010). Protected cultivation in Mediterranean region: Trends and needs. *Ege Üniversitesi Ziraat Fakültesi Dergisi*, 46(3):215-223.
- Ünlü, A., Baysal, Ö., Polat, İ., Sülü, S.M., İkten, H., Devran, Z., & Gümrükcü, E. (2017). Batı Akdeniz Bölgesi örtüaltı yetiştiriciliğinde sorun olan domateste Bakteriyel Benek (*Pseudomonas syringae* pv. *tomato* "Okabe" Y.D.&W) hastalık

etmeni izolatlarının genetik farklılıklarının moleküler yöntemlerle tespiti. *Derim*, 34(2):122-130.

- van Der Vlugt-Bergmans, C.J.B., Brandwagt, B.F., Vant Klooster, J.W., Wagemakers, C.A.M., & van Kan, J.A.L. (1993). Genetic variation and segregation of DNA polymorphisms in *Botrytis cinerea*. *Mycological Research*, 97(10):1193-1200.
- Vercesi, A., Toffolatti, S.L., Venturini, G., Campia, P., & Scagnelli, S. (2014). Characterization of Botrytis cinerea populations associated with treated and untreated cv. Moscato vineyards. Phytopathologia Mediterranea, 53(1):108-123.
- White, T.J., Bruns, T., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols: Aguide to methods and applications (M.A. 9nnis, D.H. Gelfand, J.J.Sninsky and T.J. White, eds): 315-322. San Diego: Academic Press.
- Williamson B., Tudzynski, B., Tudzynski, P., & van Kan, J.A.L. (2007). *Botrytis cinerea*: the cause of grey mould disease. *Molecular Plant Pathology*, 8(5):561-580.
- Yohalem, D.S., Neilson, K., & Nicolaisen, M. (2003). Taxonomic and nomenclatural clarification of the onion neck rotting *Botrytis* species. *Mycotaxon*, 85:175-182.