2,074 research outputs found

    Topologically massive gravity as a Pais-Uhlenbeck oscillator

    Get PDF
    We give a detailed account of the free field spectrum and the Newtonian limit of the linearized "massive" (Pauli-Fierz), "topologically massive" (Einstein-Hilbert-Chern-Simons) gravity in 2+1 dimensions about a Minkowski spacetime. For a certain ratio of the parameters, the linearized free theory is Jordan-diagonalizable and reduces to a degenerate "Pais-Uhlenbeck" oscillator which, despite being a higher derivative theory, is ghost-free.Comment: 9 pages, no figures, RevTEX4; version 2: a new paragraph and a reference added to the Introduction, a new appendix added to review Pais-Uhlenbeck oscillators; accepted for publication in Class. Quant. Gra

    Compromising system and user interests in shelter location and evacuation planning

    Get PDF
    Cataloged from PDF version of article.Traffic management during an evacuation and the decision of where to locate the shelters are of critical importance to the performance of an evacuation plan. From the evacuation management authority’s point of view, the desirable goal is to minimize the total evacuation time by computing a system optimum (SO). However, evacuees may not be willing to take long routes enforced on them by a SO solution; but they may consent to taking routes with lengths not longer than the shortest path to the nearest shelter site by more than a tolerable factor. We develop a model that optimally locates shelters and assigns evacuees to the nearest shelter sites by assigning them to shortest paths, shortest and nearest with a given degree of tolerance, so that the total evacuation time is minimized. As the travel time on a road segment is often modeled as a nonlinear function of the flow on the segment, the resulting model is a nonlinear mixed integer programming model. We develop a solution method that can handle practical size problems using second order cone programming techniques. Using our model, we investigate the importance of the number and locations of shelter sites and the trade-off between efficiency and fairness. 2014 Elsevier Ltd. All rights reserved

    Noise Enhanced Hypothesis-Testing in the Restricted Bayesian Framework

    Get PDF
    Cataloged from PDF version of article.Performance of some suboptimal detectors can be enhanced by adding independent noise to their observations. In this paper, the effects of additive noise are investigated according to the restricted Bayes criterion, which provides a generalization of the Bayes and minimax criteria. Based on a generic M-ary composite hypothesis-testing formulation, the optimal probability distribution of additive noise is investigated. Also, sufficient conditions under which the performance of a detector can or cannot be improved via additive noise are derived. In addition, simple hypothesis-testing problems are studied in more detail, and additional improvability conditions that are specific to simple hypotheses are obtained. Furthermore, the optimal probability distribution of the additive noise is shown to include at most mass points in a simple M-ary hypothesis-testing problem under certain conditions. Then, global optimization, analytical and convex relaxation approaches are considered to obtain the optimal noise distribution. Finally, detection examples are presented to investigate the theoretical results

    Photonuclear reactions with Zinc: A case for clinical linacs

    Get PDF
    The use of bremsstrahlung photons produced by a linac to induce photonuclear reactions is wide spread. However, using a clinical linac to produce the photons is a new concept. We aimed to induce photonuclear reactions on zinc isotopes and measure the subsequent transition energies and half-lives. For this purpose, a bremsstrahlung photon beam of 18 MeV endpoint energy produced by the Philips SLI-25 linac has been used. The subsequent decay has been measured with a well-shielded single HPGe detector. The results obtained for transition energies are in good agreement with the literature data and in many cases surpass these in accuracy. For the half-lives, we are in agreement with the literature data, but do not achieve their precision. The obtained accuracy for the transition energies show what is achievable in an experiment such as ours. We demonstrate the usefulness and benefits of employing clinical linacs for nuclear physics experiments

    Compromising system and user interests in shelter location and evacuation planning

    Get PDF
    Traffic management during an evacuation and the decision of where to locate the shelters are of critical importance to the performance of an evacuation plan. From the evacuation management authority's point of view, the desirable goal is to minimize the total evacuation time by computing a system optimum (SO). However, evacuees may not be willing to take long routes enforced on them by a SO solution; but they may consent to taking routes with lengths not longer than the shortest path to the nearest shelter site by more than a tolerable factor. We develop a model that optimally locates shelters and assigns evacuees to the nearest shelter sites by assigning them to shortest paths, shortest and nearest with a given degree of tolerance, so that the total evacuation time is minimized. As the travel time on a road segment is often modeled as a nonlinear function of the flow on the segment, the resulting model is a nonlinear mixed integer programming model. We develop a solution method that can handle practical size problems using second order cone programming techniques. Using our model, we investigate the importance of the number and locations of shelter sites and the trade-off between efficiency and fairness. © 2014 Elsevier Ltd

    Green's Matrix for a Second Order Self-Adjoint Matrix Differential Operator

    Get PDF
    A systematic construction of the Green's matrix for a second order, self-adjoint matrix differential operator from the linearly independent solutions of the corresponding homogeneous differential equation set is carried out. We follow the general approach of extracting the Green's matrix from the Green's matrix of the corresponding first order system. This construction is required in the cases where the differential equation set cannot be turned to an algebraic equation set via transform techniques.Comment: 19 page

    Calorons in Weyl Gauge

    Get PDF
    We demonstrate by explicit construction that while the untwisted Harrington-Shepard caloron AμA_\mu is manifestly periodic in Euclidean time, with period β=1T\beta=\frac{1}{T}, when transformed to the Weyl (A0=0A_0=0) gauge, the caloron gauge field AiA_i is periodic only up to a large gauge transformation, with winding number equal to the caloron's topological charge. This helps clarify the tunneling interpretation of these solutions, and their relation to Chern-Simons numbers and winding numbers.Comment: 10 pages, 10 figures, a sign typo in equation 27 is correcte
    corecore