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Noise Enhanced Hypothesis-Testing in the
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Abstract—Performance of some suboptimal detectors can be
enhanced by adding independent noise to their observations. In
this paper, the effects of additive noise are investigated according
to the restricted Bayes criterion, which provides a generalization
of the Bayes and minimax criteria. Based on a generic -ary
composite hypothesis-testing formulation, the optimal probability
distribution of additive noise is investigated. Also, sufficient
conditions under which the performance of a detector can or
cannot be improved via additive noise are derived. In addition,
simple hypothesis-testing problems are studied in more detail,
and additional improvability conditions that are specific to simple
hypotheses are obtained. Furthermore, the optimal probability
distribution of the additive noise is shown to include at most
mass points in a simple -ary hypothesis-testing problem under
certain conditions. Then, global optimization, analytical and
convex relaxation approaches are considered to obtain the optimal
noise distribution. Finally, detection examples are presented to
investigate the theoretical results.

Index Terms—Composite hypotheses, noise enhanced detection,
-ary hypothesis-testing, restricted Bayes, stochastic resonance.

I. INTRODUCTION

A LTHOUGH noise commonly degrades performance of a
system, outputs of some nonlinear systems can be im-

proved by adding noise to their inputs or by increasing the noise
level in the system via a mechanism called stochastic resonance
(SR) [1]–[14]. SR is said to be observed when increases in noise
levels cause an increase in a metric of the quality of signal trans-
mission or detection performance. This counterintuitive effect
is mainly due to system nonlinearities and/or some parame-
ters being suboptimal [14]. Improvements that can be obtained
via SR can be in various forms, such as an increase in output
signal-to-noise ratio (SNR) [1], [4], [5] or mutual information
[6]–[11], [15], [16]. The first study of SR was performed in [1]
to investigate the periodic recurrence of ice gases. In that work,
the presence of noise was taken into account in order to explain
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a natural phenomenon. Since then, SR has been investigated for
numerous nonlinear systems, such as optical, electronic, mag-
netic, and neuronal systems [3]. Also, it has been extensively
studied for biological systems [17], [18].

From a signal processing perspective, SR can be viewed as
noise benefits in a signal processing system, or, alternatively,
noise enhanced signal processing [13], [14]. Specifically,
in detection theory, SR can be considered for performance
improvements of some suboptimal detectors by adding inde-
pendent noise to their observations, or by increasing the noise
level in the observations. One of the first studies of SR for
signal detection is reported in [19], which deals with signal
extraction from background noise. After that study, some
works in the physics literature also investigate SR for detec-
tion purposes [15], [16], [20]–[22]. In the signal processing
community, SR is regarded as a mechanism that can be used to
improve the performance of a suboptimal detector according
to the Bayes, minimax, or Neyman-Pearson criteria [12], [13],
[23]–[37]. In fact, noise enhancements can also be observed
in optimal detectors, as studied in [13] and [37]. Various
scenarios are investigated in [37] for optimal Bayes, minimax
and Neyman-Pearson detectors, which shows that performance
of optimal detectors can be improved (locally) by raising the
noise level in some cases. In addition, randomization between
two anti-podal signal pairs and the corresponding maximum
a posteriori probability (MAP) decision rules is studied in
[13], and it is shown that power randomization can result in
significant performance improvement.

In the Neyman-Pearson framework, the aim is to increase the
probability of detection under a constraint on the probability of
false alarm [12], [13], [24], [26]. In [24], an example is pre-
sented to illustrate the effects of additive noise on the detection
performance for the problem of detecting a constant signal in
Gaussian mixture noise. In [12], a theoretical framework for
investigating the effects of additive noise on suboptimal de-
tectors is established according to the Neyman-Pearson crite-
rion. Sufficient conditions under which performance of a de-
tector can or cannot be improved via additive noise are derived,
and it is proven that optimal additive noise can be generated
by a randomization of at most two discrete signals, which is
an important result since it greatly simplifies the calculation of
the optimal noise probability density function (p.d.f.). An opti-
mization theoretic framework is provided in [13] for the same
problem, which also proves the two mass point structure of the
optimal additive noise p.d.f., and, in addition, shows that an op-
timal noise distribution may not exist in certain scenarios.

The study in [12] is extended to variable detectors in [25],
and similar observations as in the case of fixed detectors are
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made. Also, the theoretical framework in [12] is applied to se-
quential detection and parameter estimation problems in [38]
and [39], respectively. In [38], a binary sequential detection
problem is considered, and additive noise that reduces at least
one of the expected sample sizes for the sequential detection
system is obtained. In [39], improvability of estimation perfor-
mance via additive noise is illustrated under certain conditions
for various estimation criteria, and the form of the optimal noise
p.d.f. is obtained for each criterion. The effects of noise are
investigated also for detection of weak sinusoidal signals and
for locally optimal detectors. In [33] and [34], detection of a
weak sinusoidal signal is considered, and improvements on de-
tection performance are investigated. In addition, [35] studies
the optimization of noise and detector parameters of locally op-
timal detectors for the detection of a small amplitude sinusoid
in non-Gaussian noise.

In [23], the effects of additive noise are investigated ac-
cording to the Bayes criterion under uniform cost assignment.
It is shown that the optimal noise that minimizes the proba-
bility of decision error has a constant value, and a Gaussian
mixture example is presented to illustrate the improvability of
a suboptimal detector via adding constant “noise.” On the other
hand, [25] and [29] consider the minimax criterion, which aims
to minimize the maximum of the conditional risks [40], and
they investigate the effects of additive noise on suboptimal
detectors. It is shown in [29] that the optimal additive noise can
be represented, under mild conditions, by a randomization of at
most signal levels for an -ary hypothesis testing problem
in the minimax framework.

Although both the Bayes and minimax criteria have been con-
sidered for noise enhanced hypothesis-testing [23], [25], [29],
no studies have considered the restricted Bayes criterion [41].
In the Bayesian framework, the prior information is precisely
known, whereas it is not available in the minimax framework
[40]. However, having prior information with some uncertainty
is the most common situation, and the restricted Bayes criterion
is well-suited in that case [41], [42]. In the restricted Bayesian
framework, the aim is to minimize the Bayes risk under a con-
straint on the individual conditional risks [41]. Depending on
the value of the constraint, the restricted Bayes criterion covers
the Bayes and minimax criteria as special cases [42]. In general,
it is challenging to obtain the optimal decision rule under the re-
stricted Bayes criterion [42]–[46]. In [42], a number of theorems
are presented to obtain the optimal decision rule by modifying
Wald’s minimax theory [47]. However, the application of those
theorems requires certain conditions to hold and commonly in-
tensive computations. Therefore, [42] states that the widespread
application of the optimal detectors according to the restricted
Bayes criterion would require numerical methods in combina-
tion with theoretical results derived in [42].

Although it is challenging to obtain the optimal detector ac-
cording to the restricted Bayes criterion, this criterion can be
quite advantageous in practical applications compared to the
Bayes and minimax criteria, as studied in [42]. Therefore, in this
paper, the aim is to consider suboptimal detectors and to inves-
tigate how their performance can be improved via additive in-
dependent noise in the restricted Bayesian framework. In other
words, one motivation is to improve performance of suboptimal

detectors via additive noise and to provide reasonable perfor-
mance with low computational complexity. Another motivation
is the theoretical interest to investigate the effects of noise on
suboptimal detectors and to obtain sufficient conditions under
which performance of detectors can or cannot be improved via
additive noise in the restricted Bayesian framework.

In this paper, the effects of additive independent noise on the
performance of suboptimal detectors are investigated according
to the restricted Bayes criterion. A generic -ary composite hy-
pothesis-testing problem is considered, and sufficient conditions
under which a suboptimal detector can or cannot be improved
are derived. In addition, various approaches to obtaining the
optimal solution are presented. For simple hypothesis-testing
problems, additional improvability conditions that are simple
to evaluate are proposed, and it is shown that optimal addi-
tive noise can be represented by a p.d.f. with at most mass
points. Furthermore, optimization theoretic approaches to ob-
taining the optimal noise p.d.f. are discussed; both global opti-
mization techniques and approximate solutions based on convex
relaxation are considered. Also, an analytical approach is pro-
posed to obtain the optimal noise p.d.f. under certain conditions.
Finally, detection examples are provided to investigate the theo-
retical results and to illustrate the practical importance of noise
enhancement.

The remainder of the paper is organized as follows. Section II
studies composite hypothesis-testing problems, and provides a
generic formulation of the problem. In addition, improvability
and nonimprovability conditions are presented and an approxi-
mate solution of the optimal noise problem is discussed. Then,
Section III considers simple hypothesis-testing problems and
provides additional improvability conditions. Also, the discrete
structure of the optimal noise probability distribution is spec-
ified. Then, detection examples are presented to illustrate the
theoretical results in Section IV. Finally, concluding remarks
are made in Section V.

II. NOISE ENHANCED -ARY COMPOSITE

HYPOTHESIS-TESTING

A. Problem Formulation and Motivation

Consider the following -ary composite hypothesis-testing
problem:

(1)

where represents the p.d.f. of observation for a
given value of parameter, , and belongs to parameter
set under hypotheses . The observation (measure-
ment), , is a vector with components; i.e., , and

form a partition of the parameter space
. The prior distribution of is denoted by , and it is

assumed that is known with some uncertainty [41], [42].
For example, it can be a p.d.f. estimate based on previous
decisions.

A generic decision rule (detector) is considered, which can
be expressed as

(2)
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for , where form a parti-
tion of the observation space .

In some cases, addition of noise to observations can improve
the performance of a suboptimal detector. By adding noise
to the original observation , the noise modified observation is
formed as , where has a p.d.f. denoted by ,
and is independent of .1 As in [12] and in Section II of [13],
it is assumed that the detector in (2) is fixed, and that the only
means for improving the performance of the detector is to op-
timize the additive noise . In other words, the aim is to find
the best according to the restricted Bayes criterion [41];
namely, to minimize the Bayes risk under certain constraints on
the conditional risks, specified as follows:

(3)

where represents the upper limit on the conditional risks,
is the Bayes risk, and

denotes the conditional risk of for a given value of
for the noise modified observation . More specifically,
is defined as the average cost of decision rule for a given ,

(4)

where is the p.d.f. of the noise modified observation for
a given value of , and is the cost of selecting
when , for [40].

In the restricted Bayes formulation in (3), any undesired
effects due to the uncertainty in the prior distribution can be
controlled via parameter , which can be considered as an upper
bound on the Bayes risk [42]. Specifically, as the amount of
uncertainty in the prior information increases, a smaller (more
restrictive) value of is employed. In that way, the restricted
Bayes formulation provides a generalization of the Bayesian
and the minimax approaches [41]. In the Bayesian framework,
the prior distribution of the parameter is perfectly known,
whereas it is completely unknown in the minimax framework.
On the other hand, the restricted Bayesian framework considers
some amount of uncertainty in the prior distribution and con-
verges to the Bayesian and minimax formulations as special
cases depending on the value of in (3) [42], [41]. Therefore,
the study of noise enhanced hypothesis-testing in this paper
covers the previous works on noise enhanced hypothesis-testing
according to the Bayesian and minimax criteria as special cases
[23], [25], [29].

Two main motivations for studying the effects of additive
noise on the detector performance are as follows. First, optimal

1As discussed in [12] and [24], additional improvements in detector perfor-
mance can be obtained by adding noise that depends on the original background
noise and/or that has a p.d.f. depending on which hypothesis is true. However,
adding such a dependent noise is not commonly possible in practice since the
related prior information is usually not available [12].

detectors according to the restricted Bayes criterion are diffi-
cult to obtain, or require intense computations [42]. Therefore,
in some cases, a suboptimal detector with additive noise can
provide acceptable performance with low computational com-
plexity. Second, it is of theoretical interest to investigate the im-
provements that can be achieved via additive noise [29].

In order to provide an explicit formulation of the optimiza-
tion problem in (3), which indicates the dependence of
on the p.d.f. of the additive noise explicitly, in (4) is ma-
nipulated as follows2:

(5)

(6)

(7)

(8)

where

(9)

Note that defines the conditional risk given for a con-
stant value of additive noise, . Therefore, for

is obtained; that is, is equal to the
conditional risk of the decision rule given for the original ob-
servation .

From (8), the optimization problem in (3) can be formulated
as follows:

(10)

If a new function is defined as in the following expression,

(11)

the optimization problem in (10) can be reformulated in the fol-
lowing simple form:

(12)

From (9) and (11), it is noted that . Namely,
is equal to the Bayes risk for the original observation ; that is,
the Bayes risk in the absence of additive noise.

B. Improvability and Nonimprovability Conditions

In general, it is quite complex to obtain a solution of the op-
timization problem in (12) as it requires a search over all pos-
sible noise p.d.f.s. Therefore, it is useful to determine, without
solving the optimization problem, whether additive noise can
improve the performance of the original system. In the restricted
Bayesian framework, a detector is called improvable, if there

2Note that the independence of� and� are used to obtain (5) from (4).
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exists a noise p.d.f. such that and
[cf. (12)]. Other-

wise, the detector is called nonimprovable.
First, the following nonimprovability condition is obtained

based on the properties of in (9) and in (11).
Theorem 1: Assume that there exits such that

implies for all , where is
a convex set3 consisting of all possible values of additive noise

. If and are convex functions over , then the
detector is nonimprovable.

Proof: The proof employs an approach that is similar to the
proof of Proposition 1 in [26]. Due to the convexity of ,
the conditional risk in (8) can be bounded, via Jensen’s in-
equality, as

(13)

As is a necessary condition for improvability, (13)
implies that must be satisfied. Since

, means due to the
assumption in the proposition. Hence,

(14)

where the first inequality results from the convexity of . Then,
from (13) and (14), it is concluded that implies

. Therefore, the detector is nonimprov-
able.

The conditions in Theorem 1 can be used to determine when
the detector performance cannot be improved via additive noise,
which prevents unnecessary efforts for trying to solve the opti-
mization problem in (12). However, it should also be noted that
Theorem 1 provides only sufficient conditions; hence, the de-
tector can still be nonimprovable although the conditions in the
theorem are not satisfied.

In order to provide an example application of Theorem 1,
consider a Gaussian location testing problem [40], in which the
observation has a Gaussian p.d.f. with mean and variance

, denoted by , where and are known values.
Hypotheses and correspond to and , re-
spectively (that is, and ). In addition,
consider a decision rule that selects if and
otherwise. Let represent the set of addi-
tive noise values for possible performance improvement. For
uniform cost assignment (UCA) [40], (9) can be used to obtain

as follows:

(15)

(16)

(17)

where denotes the -function,
and for and for are used

3� can be modeled as convex because convex combination of individual
noise components can be obtained via randomization [48].

in (15) due to the UCA. Similarly, can be obtained as
. For equal priors, in (11) is

obtained as ; that is,

(18)

Let be set to , which determines the upper bound
on the conditional risks. Regarding the assumption in Theorem
1, it can be shown for that implies

for all . This follows from the facts
that requires that
and that in (18) satisfies for

due to the convexity of for . In
addition, it can be shown that both and are convex
functions over , which implies that is also convex over

. Then, Theorem 1 implies that the detector is nonimprovable
for this example. Therefore, there is no need to tackle the opti-
mization problem in (12) in this case, since is
concluded directly from the theorem.

Next, sufficient conditions under which the detector perfor-
mance can be improved via additive noise are obtained. To that
aim, it is first assumed that and are second-
order continuously differentiable around . In addition, the
following functions are defined for notational convenience:

(19)

(20)

(21)

(22)

where and represent the th components of and , respec-
tively. Then, the following theorem provides sufficient condi-
tions for improvability based on the function definitions above.

Theorem 2: Let be the unique maximizer of
and . Then, the detector is improvable:

• if there exists a -dimensional vector such that
is satisfied at ; or

• if there exists a -dimensional vector such that
, and

are satisfied at .
Proof: Please see Appendix A.

In order to better understand the conditions in Theorem 2, it
is first noted from (9) that represents the conditional risk
given in the absence of additive noise, . Therefore, in
the theorem corresponds to the value of for which the original
conditional risk is maximum and that maximum value is
assumed to be equal to the upper limit . In other words, it is
assumed that, in the absence of additive noise, the original de-
tector already achieves the upper limit on the conditional risks
for the modified observations specified in (3). Then, the results
in the theorem imply that, under the stated conditions, it is pos-
sible to obtain a noise p.d.f. with multiple mass points around
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, which can reduce the Bayes risk under the constraint on
the conditional risks.

In order to present alternative improvability conditions to
those in Theorem 2, we extend the conditions that are de-
veloped for simple binary hypothesis-testing problems in the
Neyman-Pearson framework in [12] to our problem in (12). To
that aim, we first define a new function as

(23)

which specifies the minimum Bayes risk for a given value of
the maximum conditional risk considering constant values of
additive noise.

From (23), it is observed that if there exists such
that , then the system is improvable, because
under such a condition there exists a noise component such
that and , meaning that
the detector performance can be improved by adding a constant

to the observation. However, improvability of a detector via
constant noise is not very common in practice. Therefore, the
following improvability condition is obtained for more practical
scenarios.

Theorem 3: Let the maximum value of the conditional risks in
the absence of additive noise be defined as
and . If in (23) is second-order continuously dif-
ferentiable around and satisfies , then the
detector is improvable.

Proof: Please see Appendix B.
Similar to Theorem 2, Theorem 3 provides sufficient condi-

tions that guarantee the improvability of a detector according to
the restricted Bayes criterion. Note that in Theorem 3 is al-
ways a single-variable function irrespective of the dimension of
the observation vector, which facilitates simple evaluation of the
conditions in the theorem. However, the main challenge can be
to obtain an expression for in (23) in certain scenarios. On
the other hand, Theorem 2 deals with and directly,
without defining an auxiliary function like . Therefore, im-
plementation of Theorem 2 can be more efficient in some cases.
However, the functions in Theorem 2 are always -dimensional,
which can make the evaluation of its conditions more compli-
cated than that in Theorem 3 in some other cases. In Section IV,
comparisons of the improvability results based on direct evalua-
tions of and , and those based on are provided.

C. On the Optimal Additive Noise

In general, the optimization problem in (12) is a non-convex
problem and has very high computational complexity since
the optimization needs to be performed over functions. In
Section III, it is shown that (12) simplifies significantly in
the case of simple hypothesis-testing problems. However, in
the composite case, the solution is quite difficult to obtain in
general. Therefore, a p.d.f. approximation technique [49] can
be employed in this section in order to obtain an approximate
solution of the problem.

Let the optimal noise p.d.f. be approximated by

(24)

where , and is a window function
with and , for . In
addition, let denote a scaling parameter for the th window
function. The p.d.f. approximation technique in (24) is referred
to as Parzen window density estimation, which has the property
of mean-square convergence to the true p.d.f. under certain con-
ditions [50]. From (24), the optimization problem in (12) can be
expressed as4

(25)

where and
.

In (25), the optimization is performed over all the parameters
of the window functions in (24). Therefore, the performance
of the approximation technique is determined mainly by the
number of window functions, . As increases, the approxi-
mate solution can get closer to the optimal solution for the ad-
ditive noise p.d.f. Therefore, in general, an improved detector
performance can be expected for larger values of .

Although (25) is significantly simpler than (12), it is still not
a convex optimization problem in general. Therefore, global
optimization techniques, such as particle-swarm optimization
(PSO) [51]–[53], genetic algorithms and differential evolution
[54], can be used to calculate the optimal solution [29], [49].
In Section IV, the PSO algorithm is used to obtain the optimal
noise p.d.f.s for the numerical examples.

Although the calculation of the optimal noise p.d.f. requires
significant effort as discussed above, some of its properties
can be obtained without solving the optimization problem
in (12). To that aim, let represent the minimum value
of in (23); that is, . In addition,
suppose that this minimum is attained at .5 Then, one
immediate observation is that if is less than or equal to
the conditional risk limit , then the noise component
that results in is the optimal noise
component; that is, the optimal noise is a constant in that
scenario, . On the other hand, if ,
then it can be shown that the optimal solution of (12) satisfies

(Appendix C).

III. NOISE ENHANCED SIMPLE HYPOTHESIS-TESTING

In this section, noise enhanced detection is studied in the re-
stricted Bayesian framework for simple hypothesis-testing prob-
lems. In simple hypothesis-testing problems, each hypothesis
corresponds to a single probability distribution [40]. In other
words, the generic composite hypothesis-testing problem in (1)
reduces to a simple hypothesis-testing problem if each con-
sists of a single element.

4As in [12], it is possible to perform the optimization over single-variable
functions by considering mapping of the noise � via � ��� or � ���.

5If there are multiple � values that result in the minimum value � , then
the minimum of those values can be considered.
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Since the simple hypothesis-testing problem is a special case
of the composite one, the results in Section II are also valid for
this section. However, by using the special structure of simple
hypotheses, we obtain additional results in this section that are
not valid for composite hypothesis-testing problems. It should
be noted that both composite and simple hypothesis-testing
problems are used to model various practical detection exam-
ples [40], [55]; hence, specific results can be useful in different
applications.

A. Problem Formulation

The problem can be formulated as in Section II-A by defining
for in (1). In addition, instead

of the prior p.d.f. , the prior probabilities of the hypotheses
can be defined by with . Then,
the optimal additive noise problem in (3) becomes

(26)

where is the Bayes risk and is
the conditional risk of given for the noise modified obser-
vation , which is given by

(27)

with denoting the probability that when
is the true hypothesis, and defining the cost of deciding

when is true. As in Section II-A, the constraint
sets an upper limit on the conditional risks, and its value is
determined depending on the amount of uncertainty in the prior
probabilities.

In order to investigate the optimal solution of (26), an alter-
native expression for is obtained first. Since the additive
noise is independent of the observation becomes

(28)

where and represent the p.d.f.s of the original ob-
servation and the noise modified observation, respectively, when
hypothesis is true. Then, (27) can be expressed, from (28),
as

(29)

with

(30)

(31)

Based on the relation in (29), the optimization problem in (26)
can be reformulated as

(32)

If a new auxiliary function is defined as
, (32) becomes

(33)

Note that under UCA; that is, when for , and
for becomes equal to .

It should be noted from the definitions in (30) and (31) that
corresponds to the conditional risk given for the orig-

inal observation , . Therefore, defines the original
Bayes risk, .

B. Optimal Additive Noise

The optimization problem in (33) seems quite difficult to
solve in general as it requires a search over all possible noise
p.d.f.s. However, in the following, it is shown that an optimal
additive noise p.d.f. can be represented by a discrete probability
distribution with at most mass points in most practical cases.
To that aim, suppose that all possible additive noise values
satisfy for any finite and ; that is, for

, which is a reasonable assumption since additive
noise cannot have infinitely large amplitudes in practice. Then,
the following theorem states the discrete nature of the optimal
additive noise.

Theorem 4: If in (32) are continuous functions, then
the p.d.f. of an optimal additive noise can be expressed as

, where and
for .

Proof: The proof employs a similar approach to those used
for the related results in [12], [29] and [49]. First, the following
set is defined:

(34)

In addition, is defined as the convex hull of [56]. Since
are continuous functions, is a bounded and closed

subset of . Hence, is a compact set. Therefore, its convex
hull is a closed subset of [29]. Next, set is defined as

(35)

where is the p.d.f. of the additive noise.
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As is the convex hull of , each element of can be
expressed as ,
where , and . On the other hand, each

is also an element of as it can be obtained for
. Hence, [29]. In addition, since

for any vector random variable taking values in set , its
expected value, , is in the convex hull of [57], (34)
and (35) implies that is in the convex hull of ; that is,

. Since and , it means that [29].
Therefore, according to Carathéodory’s theorem [58], [59], any
point in (or, ) can be expressed as the convex combination
of at most points in as the dimension of is smaller
than or equal to . Since the aim is to minimize the average
of the conditional risks, the optimal solution corresponds to the
boundary of . As (or, ) is a closed set as mentioned at the
beginning of the proof, it contains its own boundary [29]. Since
any point at the boundary of can be expressed as the convex
combination of at most elements in [58], an optimal noise
p.d.f. can be represented by a discrete random variable with
mass points as stated in the theorem.

From Theorem 4, the optimization problem in (33) can be
simplified as

(36)

The optimization in (36) is considerably simpler than that in (33)
since the former is over a set of variables instead of functions.
However, (36) can still be a nonconvex optimization problem
in general; hence, global optimization techniques, such as PSO
[51] and differential evolution [54] may be needed.

In order to provide a convex relaxation [60] of the optimiza-
tion problem in (36) and to obtain an approximate solution
in polynomial time, one can assume that additive noise can
take only finitely many known values specified by
[29]. This scenario, for example, corresponds to digital systems
in which the signals can take only finitely many different
levels. Then, the aim becomes the determination of the weights

of those possible noise values. In that case, (33) can
be formulated as

(37)

which is a linearly constrained linear programming (LCLP)
problem; hence, can be solved in polynomial time [60]. It

should be noted that as the optimization is performed over more
noise values (as increases), the solution gets closer to the
optimal solution of (33).

As an alternative approach, an analytical solution similar to
that in [12] can also be proposed for obtaining the optimal ad-
ditive noise. First, consider the optimization problem in (32) for

; i.e., the binary case. If functions and are
monotone, then and can be defined as and

. Otherwise, let and be defined as follows:

(38)

In general, there can exist multiple values of corre-
sponding to a given value of . However, the definitions of

and in (38) make sure that only the best (minimum) value
of corresponding to a given is considered, and
vice versa. Therefore, can be expressed as , where

is a monotone function of and is defined on the range
of , which is denoted by with
and . We call the set of for which and

satisfy the constraints [cf. (32)] as the feasible domain. Then,
let a new function be defined as follows:

(39)

If takes its global minimum value in the feasible domain,
then the optimal Bayes risk is equal to that minimum value
and the optimal additive noise can be represented by a constant
value. For example, if , then the optimal
additive noise p.d.f. can be expressed as ,
where satisfies .6 On the other hand, if
achieves its global minimum value outside the feasible domain,
then an analytic solution for the optimal additive noise p.d.f.
can be obtained as explained in the following. At the end of
Section II-C, it was stated that the maximum value of the op-
timal conditional risks must be equal to the constraint level for
the case considered here. This implies that the optimal
pair is equal to one of the following: or , where
and are such that and . It should be noted
that if is a decreasing function and is larger than , then
the feasible domain is an empty set implying that there is no so-
lution satisfying the constraint.

Since is a monotone function and the maximum of the
optimal conditional risks must be equal to , the feasible domain
must be in the form of an interval, say , and the value of
corresponding to the optimal solution must be equal to either
or . In the following derivations, it is assumed that the value of

corresponding to the optimal solution is , and takes
its global minimum value for . However, it should be
noted that these assumptions do not reduce the generality of
the results. In other words, the derivations based on the other
possible assumptions yield the same result.

Similar to [12], the following auxiliary function is defined:

(40)

6If there are multiple such � ’s, then the one that minimizes � �� � should
be chosen.
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where . It is observed that is an increasing function of
. Let the range of be partitioned into and

. In addition, two new functions are defined as
follows:

(41)

where is the value of that minimizes for a
given , and similarly, is value of that minimizes

for a given .
From (40) and (41), it is obtained for that

. On the other hand, as
. There-

fore, there must exist a , where , such that

(42)

Consider the division of the range of into two disjoint sets
and such that

. Then, any additive noise p.d.f. can be expressed
in the following form:

(43)

where is an indicator function such that
if otherwise [12]. By definition,

should be satisfied. In addition, the
expectation of in (40) over can be bounded as follows:

(44)

where the first expression is obtained from (42) and (43), and
the final inequality is obtained from the fact that
for [cf. (41) and (42)]. This lower bound is achieved
for , with

. Hence, for .
From (39) and (40), the Bayes risk can be expressed

as . Since
and , one can achieve

by using a noise component with p.d.f.
, where with ap-

propriate values for and . Thus, the optimal additive noise
p.d.f. is ,
where and , and the
optimal Bayes risk is given by .

Since has (local) minimum values at
and , if is continuously differentiable, then

. Then, (40)
implies the following equalities:

(45)

From (42), we also have the following relation:

(46)

Therefore, (45) and (46) can be used to obtain the following
result:

(47)

From the equalities in (47), one can find and ,
and the corresponding mass points and that satisfy

and .7

After obtaining and as described above, the corre-
sponding weights and calculated from the following equa-
tions: and . Due to
the fact that the maximum of the optimal conditional risks must
be must be equal to the constraint level or must satisfy

. These two cases should be checked separately and
then the one corresponding to the optimal solution should be
determined. In other words, the weight pairs corresponding to

and should be calculated separately,
and then the one that results in better performance should be se-
lected. An alternative approach to determine is to find where

takes its global minimum value. If takes its global
minimum value for , then must be equal to ; oth-
erwise, must be found from . After finding , the
optimal weight pair can easily be obtained from
and .

The analytic approach described above for the binary case
can also be extended to the -ary case for . How-
ever, in that case, only the mass points, , can
be found analytically. The weights, , should be
found via a numerical approach. Such a semi-analytical so-
lution can still provide significant computational complexity
reduction in some cases since the weights, which are not
determined analytically, are easier to search for than the
mass points, as the weights are always scalar whereas the
mass points can also be multidimensional. The analytical
approach to obtaining the mass points in the -ary case is
a simple extension of that in the binary case. Mainly, a func-
tion should be defined as

,
function in (39) should be generalized as

, and should be modified
as

. The resulting equations provide a
generalization of those in (47), the details of which are not
presented here due to the space limitations.

C. Improvability and Nonimprovability Conditions

In this section, various sufficient conditions are derived in
order to determine when the performance of a detector can or
cannot be improved via additive independent noise according
to the restricted Bayes criterion.

7If there are multiple such � ’s (� ’s), then the one that minimizes � �� �
�� �� �� should be chosen.
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For the nonimprovability conditions, Theorem 1 in
Section II-B already provides a quite explicit statement to
evaluate the nonimprovability. Therefore, it is also practical for
simple hypothesis-testing problems, as observed in the example
after Theorem 1. In accordance with the notation in this section,
Theorem 1 can be restated for simple hypothesis-testing prob-
lems as follows. Assume that there exits
such that implies for all ,
where is a convex set consisting of all possible values of
additive noise . If and are convex functions
over , then the detector is nonimprovable. Regarding the
improvability conditions, in addition to Theorem 2 and The-
orem 3 in Section II-B, new sufficient conditions that are
specific to simple hypothesis-testing problems are provided
in the following. To that aim, it is first assumed that
for and , defined in Section III-A,
are second-order continuously differentiable around .
In addition, similar to (19)–(22), the following functions are
defined:

(48)

(49)

(50)

(51)

for , where and represent the th
components of and , respectively.

Note that the result in Theorem 2 can also be used for simple
hypothesis-testing problems when there exists a unique maxi-
mizer of the original conditional risks, .
In the following, more generic improvability conditions, which
cover the cases with multiple maximizers of as well, are
obtained for simple hypothesis-testing problems. Let denote
the set of indexes for which achieves the maximum value
of , and let represent the set of indexes with ;
that is,

(52)

(53)

In addition, let , meaning that
for . Consider the

functions in (48)–(51), and define set as the set
that consists of and for ; that is,

(54)

for . Note that has elements, where
represents the number of elements in . In addition, will
be used to refer to the th element of . It should be noted
that and for

, where is the th element of
. Finally, the following sets are introduced to define the set

of indexes for which is zero, negative or positive:

(55)

(56)

(57)

Based on the definitions in (48)–(57), the following theorem
provides sufficient conditions for improvability.

Theorem 5: For simple hypothesis-testing problems, a de-
tector is improvable according to the restricted Bayes criterion
if there exists a -dimensional vector such that the following
two conditions are satisfied at :

1) .
2) One of the following is satisfied:

• or .
• is a positive even number, , and

(58)

• is an odd number, , and

(59)

Proof: Please see Appendix D.
Theorem 5 states that whenever the two conditions in the the-

orem are satisfied, it can be concluded that the detection perfor-
mance can be improved via additive independent noise. It should
be noted that after defining the sets in (52), (54), and (57), it is
straightforward to check the conditions stated in the theorem.
An example application of Theorem 5 is provided in Section IV,
where its practicality and effectiveness are observed.

Finally, another improvability condition is derived as a corol-
lary of Theorem 5.

Corollary 1: Assume that and ,
, are second-order continuously differen-

tiable around and that .
Let denote the gradient of at . Then, the detector
is improvable

• if ; or
• if is not convex around .

Proof: Please see Appendix E.
Although Corollary 1 provides simpler improvability

conditions than those in Theorem 5, the assumption of
makes it less practical. In other

words, Corollary 1 assumes that, in the absence of additive
noise, the maximum of the original conditional risks is strictly
smaller than the upper limit, . Since it is usually possible to
increase the maximum of the conditional risks to reduce the
Bayes risk, the scenario in Corollary 1 considers a more trivial
case than that in Theorem 5.
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IV. NUMERICAL RESULTS

In this section, a binary hypothesis-testing problem is studied
first in order to provide a practical example of the results pre-
sented in the previous sections. The hypotheses are defined as

(60)

where is a known scalar value, and is symmetric
Gaussian mixture noise with the following p.d.f.

(61)

where for , and

(62)

for . Due to the symmetry assumption,
and for

. In addition, the detector is described by

(63)

where , with representing the additive independent
noise term. The aim is to obtain the optimal p.d.f. for the additive
noise based on the optimization problem in (26).

Under the assumption of UCA, (60)–(63) can be used to cal-
culate and from (30) and (31) as

(64)

where denotes the -function.
The symmetric Gaussian mixture noise specified above is ob-

served in many practical scenarios [61]–[63]. One important
scenario is multiuser wireless communications, in which the
desired signal is corrupted by interference from other users as
well as by zero-mean Gaussian background noise [64]. In other
words, the signal detection example in (60) with symmetric
Gaussian mixture noise finds various practical applications.

Since the problem in (60) models a signal detection problem
in the presence of noise, we consider two common scenarios in
the following simulations. In the first one, it is assumed that the
noise-only hypothesis has a higher prior probability than the
signal-plus-noise hypothesis . An example of this scenario is
the signal acquisition problem, in which a number of correla-
tion outputs are compared against a threshold to determine the
timing/phase of the signal [65]. In the second scenario, equal
prior probabilities are assumed for the hypotheses, which can
be well-suited for binary communications systems that transmit
no signal for bit 0 and a signal for bit 1 (i.e., on-off keying)
[66]. For the first scenario, it is assumed that the prior probabil-
ities are known, with some uncertainty, to be equal to
and , which is called the unequal priors case in the fol-
lowing. On the other hand, is considered for the

equal priors case. As mentioned in Section II-A, the restricted
Bayes criterion mitigates the undesired effects due to the un-
certainty in prior probabilities via parameter , which sets an
upper limit on the conditional risks. In the numerical results,
symmetric Gaussian mixture noise with is considered,
where the mean values of the Gaussian components in the mix-
ture noise in (61) are specified as
with corresponding weights of . In addi-
tion, for all the cases, the variances of the Gaussian components
in the mixture noise are assumed to be the same; i.e., for

in (62).
For the detection problem described above, the optimal addi-

tive noise can be represented by a probability distribution with
at most two mass points according to Theorem 4. Therefore, the
optimal additive noise p.d.f. can be calculated as the solution of
the optimization problem in (36) for . In this section, the
PSO algorithm is employed to obtain the optimal solution, since
it is based on simple iterations with low computational com-
plexity and has been successfully applied to numerous problems
in various fields [67]–[70] (please refer to [51]–[53] for detailed
descriptions of the PSO algorithm).8

Figs. 1, 2 and 3 illustrate the Bayes risks for the noise mod-
ified and the original (i.e., in the absence of additive noise) de-
tectors for various values of in the cases of equal and unequal
priors for , respectively, where

is used.9 From the figures, it is observed that as de-
creases, the improvement obtained via additive noise increases.
This is mainly due to the fact that noise enhancements com-
monly occur when observations have multimodal p.d.f.s [12],
and the multimodal structure is more pronounced for small ’s.
In addition, the figures indicate that there is always more im-
provement in the unequal priors case than that in the equal priors
case, which is expected since there is more room for noise en-
hancement in the unequal priors case due to the asymmetry be-
tween the weights of the conditional risks in determining the
Bayes risk. Another important point to note from the figures is
that the feasible ranges of values are different for different
values of . In other words, for each , the constraint on the
maximum conditional risks [cf. (26)] cannot be satisfied after
a specific value of . This is expected since as (which deter-
mines the average noise power) exceeds a certain value, it be-
comes impossible to keep the conditional risks below the given
limit . Therefore, Figs. 1, 2, and 3 are plotted only up to those
specific values. From the figures, it is observed that those max-
imum values are 0.117, 0.31 and 1.93 for ,
and , respectively.

In order to investigate the results in Figs. 1, 2, and 3 further,
Tables I, II, and III show the optimal additive noise p.d.f.s for
various values of in the cases of equal and unequal priors for

and respectively, where .

8In the implementation of the PSO algorithm, we employ 50 particles and
1000 iterations. Also, the other parameters are set to � � � � ���� and
� � �������, and the inertia weight � is changed from 1.2 to 0.1 linearly with
the iteration number. Please refer to [51] for the details of the PSO algorithm
and the definitions of the parameters.

9Due to the symmetry of the Gaussian mixture noise, the conditional risks in
the absence of noise, � 	�
 and � 	�
, are equal. Therefore, the original Bayes
risks are the same for both the equal and the unequal priors cases.
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Fig. 1. Bayes risks of original and noise modified detectors versus � in cases
of equal priors and unequal priors for � � ���� and � � �.

Fig. 2. Bayes risks of original and noise modified detectors versus � in cases
of equal priors and unequal priors for � � ���� and � � �.

Fig. 3. Bayes risks of original and noise modified detectors versus � in cases
of equal priors and unequal priors for � � ��� and � � �.

TABLE I
OPTIMAL ADDITIVE NOISE P.D.F.S FOR VARIOUS VALUES OF �

FOR � � ���� AND � � �

TABLE II
OPTIMAL ADDITIVE NOISE P.D.F.S FOR VARIOUS VALUES OF �

FOR � � ���� AND � � �

TABLE III
OPTIMAL ADDITIVE NOISE P.D.F.S FOR VARIOUS VALUES OF �

FOR � � ��� AND � � �

From Theorem 4, it is known that the optimal additive noise in
this example can be represented by a discrete probability distri-
bution with at most two mass points, which can be described as

. It is observed from
the tables that the optimal additive noise p.d.f. has two mass
points for certain values of , whereas it has a single mass point
for other ’s. Also, in the case of equal priors for
and , the optimal noise p.d.f.s contain only one mass
point at the origin for some values of , which implies that the
detector is nonimprovable in those scenarios. However, there is
always improvement for the unequal priors case, which can be
also verified from Figs. 1, 2, and 3.

Fig. 4 illustrates the Bayes risks for the original and the noise
modified detectors for various values of in the cases of equal
and unequal priors for and . It is noted
that the original conditional risks are above the specified limit

for .10 However, after the addition of optimal
noise, the noise modified detectors result in conditional risks
that are below the limit, which is expected since the optimal
noise p.d.f.s are obtained from the solution of the constrained
optimization problem in (26). Another observation from Fig. 4
is that, in the equal priors case, the improvement decreases as
increases, and there is no improvement after a certain value of

. However, for the unequal priors case, improvement can be
observed over a wider range of values, which is expected due
to the same reasons argued for Figs. 1–3.

10For the original detector, the conditional risks are equal; hence, � ��	 �
� ��	 � � ��	.
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Fig. 4. Bayes risks of original and noise modified detectors versus � in cases
of equal priors and unequal priors for � � ���� and � � ����.

Fig. 5. Improvement ratio versus � in the cases of equal priors and unequal
priors for � � ����� � � ���� and � � ���, where � � �.

Fig. 5 illustrates the improvement ratio, defined as the ratio
of the Bayes risks in the absence and presence of additive
noise, versus for the cases of equal and unequal priors for

and , where is used. In
the unequal priors case, as increases, an increase is observed
in the improvement ratio up to a certain value of , and then the
improvement ratio becomes constant. Those critical values
specify the boundaries between the restricted Bayes and the (un-
restricted) Bayes criteria. When gets larger than those values,
the constraint in (26) is no longer active; hence, the problem
reduces to the Bayesian framework. Therefore, further increases
in do not cause any additional performance improvements.
Similarly, as the value of decreases, the restricted Bayes cri-
terion converges to the minimax criterion [29]. The restricted
Bayes criterion achieves its minimum improvement ratio when
it becomes equivalent to the minimax criterion, and achieves
its maximum improvement ratio when it is equal to the Bayes
criterion. In the case of equal priors, the improvement ratio is
constant with respect to , meaning that the improvement for the

minimax criterion equals to that for the Bayes criterion. Another
observation from the figure is that an increase in reduces the
improvement ratio, and for the same values of , there is more
improvement in the unequal priors case. Finally, it should be
noted that various values of in Fig. 5 correspond to different
amounts of uncertainty in the prior information [42]. As the prior
information gets more accurate, a larger value of is selected;
hence, the constraint on the conditional risks becomes less strict,
meaning that the restricted Bayes criterion converges to the
Bayes criterion after a certain value of . On the other hand, as the
amount of uncertainty increases, a smaller value of is selected,
and the restricted Bayes criterion converges to the minimax
criterion when becomes equal to the minimax risk [40], [42].

Next, the improvability conditions in Theorem 5 are inves-
tigated for the detection example. To that aim, it is first ob-
served that the original conditional risks and are
equal to each other for any value of due to the symmetry
of the Gaussian mixture noise [cf. (64)]. Therefore,

. In addition, suppose that
the limit on the conditional risks, , is set to the original condi-
tional risks for each value of , which implies that
in (52). Also, the first order derivatives of and at

can be calculated from (64) as

(65)

Similarly, the second order derivatives of and at
are obtained as

(66)

For the unequal priors case, the first and second order derivatives
of at can be expressed as

and . From (65), it is noted
that and ; hence, as well. Then,
from (48)–(51), set in (54) can be expressed, at , as

(67)

Therefore, (55)–(57) imply that, at ,
and for and , and

for .11 Since , the first condition in
Theorem 5 is automatically satisfied. For , and

; hence, the third bullet of the second condition implies
that

(68)

is required for improvability. For and ;
hence, the second bullet of the second condition becomes active,

11Note that � � ����� �� for � � �, in which case the first condition in
Theorem 5 cannot satisfied since � � ����� ��. Therefore, � � � is not
considered in obtaining improvability conditions.
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Fig. 6. The second order derivative of � ��� at � � � versus � for various
values of �. Both Theorem 5 and Theorem 3 imply for the detection example
in this section that the detector is improvable whenever � ��� is negative. The
limit on the conditional risks, �, is set to the original conditional risks for each
value of �. The graph for � � � is scaled by 0.1 to make view of the figure
more convenient (since only the signs of the graphs are important).

which can be shown to yield the same condition as in (68). From
(67), the improvability condition in (68) can be expressed more
explicitly as

(69)

which is satisfied when . Therefore, the de-
tector is improvable whenever the expression in (66)
is negative. For the equal priors case, and in
(67) become and

, respectively. Therefore,
the first improvability condition in Theorem 5 requires that

, whereas the third bullet of the second condition
requires that for and

for . However, it can be
shown that the conditions in the third bullet are always satisfied
when . Therefore, the same improvability condition
is obtained for the equal priors case, as well. Fig. 6 illustrates

versus for various values of , where represents the
standard deviation of the Gaussian mixture noise components
[ in (62)]. It is observed that the detector performance
can be improved for if , for
if , and for if .
On the other hand, the calculations show that the detector is
actually improvable for if , for
if , and for if . Hence, the
results reveal that the proposed improvability conditions are
sufficient but not necessary, and that they are quite effective in
determining the range of parameters for which the detector per-
formance can be improved.12 Next, the improvability conditions

12In fact, � ��� can be shown to be negative even for smaller � values than
specified above; however, very small negative values are computed as zero due
to the accuracy limitations.

based on Theorem 3 are considered. For the binary hypoth-
esis-testing example in this section, in (23) becomes

. From (64), it can be shown that and are
monotone increasing and decreasing functions, respectively. In
addition, due to the symmetry of the Gaussian mixture noise,

. Therefore, without loss of generality,
can be expressed as . Then,

the second derivative of can be obtained as

(70)

In order to evaluate the condition in Theorem 5, it is first ob-
served that , since

[cf. (64)]. Then, implies that
for any . Since

from (66), and and from (65),
that improvability condition reduces to , which is
the same condition obtained from Theorem 5. Therefore, for
this specific example, the improvability conditions in Theorem
3 and Theorem 5 are equivalent (cf. Fig. 6). However, it should
be noted that the two conditions are not equivalent in general,
and the calculation of can be difficult in the absence of
monotonicity properties related to and .

Finally, another example is studied in order to investigate the
theoretical results on a 4-ary hypothesis-testing problem in the
presence of observation noise that is a mixture of non-Gaussian
components. The hypotheses and are defined as

(71)

where is a known scalar value, and is zero-
mean observation noise that is a mixture of Rayleigh distributed
components; that is, , where

for , and

(72)

for . In the numerical results, the same variance is
considered for all the Rayleigh components, meaning that

. In addition, the parameters are selected as
, ,

and .13 In addition, the
detector is described by

(73)

where , with representing the additive independent
noise term.

13It should be noted that the dependence of the means on � is necessary in
order to keep the noise zero-mean, since the Rayleigh distribution is specified
by a single parameter, �.
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Fig. 7. Bayes risks of original and noise modified detectors versus � for � �

��� and � � �.

Fig. 8. Bayes risks of original and noise modified detectors versus � for � �

��� and � � ����.

TABLE IV
OPTIMAL ADDITIVE NOISE P.D.F.S FOR VARIOUS VALUES OF � FOR � � ���

AND � � �

For equal prior probabilities and UCA, Fig. 7 illustrates the
Bayes risk versus when and . It is ob-
served that the additive noise can significantly improve the de-
tector performance (equivalently, it reduces the average prob-
ability of error of a communications system) for small values
of . In addition, for the scenario in Fig. 7, Table IV illus-
trates the optimal additive noise p.d.f.s for various values of .
In accordance with Theorem 4, the optimal noise can have up
to four non-zero mass points in this problem. Furthermore, for

, Fig. 8 plots the Bayes risk versus for the original

and noise modified detectors. A significant improvement is ob-
served for .

V. CONCLUDING REMARKS

In this paper, noise enhanced hypothesis-testing has been
studied in the restricted Bayesian framework. First, the most
generic formulation of the problem has been considered based
on -ary composite hypothesis-testing, and sufficient condi-
tions for improvability and nonimprovability of detection via
additive independent noise have been derived. In addition, an
approximate formulation of the optimal noise p.d.f. has been
presented. Then, simple hypothesis-testing problems have been
studied and additional improvability conditions that are specific
to simple hypotheses have been obtained. Also, the optimal
noise p.d.f. has been shown to include at most mass points
for -ary simple hypothesis-testing problems under certain
conditions. Then, various approaches to solving for the optimal
noise p.d.f. have been considered, including global optimization
techniques, such as the PSO, and a convex relaxation technique.
Finally, two detection examples have been studied to illustrate
the practicality of the theoretical results.

APPENDIX

A. Proof of Theorem 2

A detector is improvable if there exists a noise p.d.f.
that satisfies and ,
which can be expressed as
and . For a noise
p.d.f. having infinitesimally small noise components,

, these conditions become

(74)

Since the ’s are infinitesimally small, and can be
approximated by using the Taylor series expansion as

and respectively,
where and ( and ) are the Hessian and the gradient of

at , respectively. Therefore, (74) requires
that

(75)

Let for , where for
are infinitesimally small real numbers,

and is a -dimensional real vector. Then, based on the
function definitions in (19)–(22), the conditions in (75) can be
simplified, after some manipulation, as

(76)
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(77)

where .
Since and , the right-

hand-side of (77) goes to infinity for . Hence, we should
consider only the case. Thus, (76) and (77) can be ex-
pressed as

(78)

(79)

It is noted that can take any real value by definition via se-
lection of appropriate and infinitesimally small values for

. Therefore, for the first part of the theorem,
under the condition of at ,
which states that the second term in (78) has the same sign as
the second term in (79), there always exists that satisfies the
improvability conditions in (78) and (79). For the second part of
the theorem, since and at ,
(78) and (79) can also be expressed as

(80)

(81)

Under the condition of
at , which states that the

first term in (80) is larger than the first term in (81), there
always exists that satisfies the improvability conditions in
(80) and (81).

B. Proof of Theorem 3

Since and in (23) is second-order continu-
ously differentiable around , there exist and
such that and .
Then, it is proven in the following that an additive noise com-
ponent with improves
the detector performance under the conditional risk constraint.
First, the maximum value of the conditional risks in the pres-
ence of additive noise is shown not to exceed :

(82)

Then, the decrease in the Bayes risk is proven as follows. Due
to the assumptions in the theorem, is concave in an in-
terval around . Since can attain the value of

, which is always smaller than
due to concavity, it is concluded that . As

by definition of in (23),
is satisfied; hence, the detector is improvable.

C. Maximum Conditional Risk Achieved by Optimal Noise

Consider the case in which . In
order to prove that “ for the optimal noise
by contradiction, first assume that the optimal solution of (12)
is given by with . As in the
proof of Theorem 4 in [12], we define another noise with the
following p.d.f.:

(83)

where is the noise component that results in the minimum
Bayes risk; that is, , and is the maximum
value of the conditional risks when noise is employed; that
is, .

For the noise p.d.f. in (83), the Bayes risk and conditional
risks can be calculated as

(84)

(85)

for all . Since , (84) implies
. On the other hand, as and ,

is obtained. Therefore, cannot be an optimal so-
lution, which implies a contradiction. In other words, any noise
p.d.f. that satisfies cannot be optimal.

D. Proof of Theorem 5

Theorem 4 states that the optimal additive noise can be rep-
resented by a discrete probability distribution with at most
mass points. Therefore, a detector is improvable if there ex-
ists a noise p.d.f. that satisfies

and ,
which can be expressed as

(86)

As in the proof of Theorem 2 in Appendix A, consider the
improvability conditions in (86) with infinitesimally small noise
components, for , where ’s are
infinitesimally small real numbers, and is a -dimensional
real vector. Then, similar manipulations to those in Appendix A
[cf. (75)–(77)] can be performed to obtain

(87)

(88)

for , where .
Since , the right-hand-side of (88) goes

to infinity for . Hence, one can consider only.
Thus, (87) and (88) can be expressed as

(89)
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(90)

Based on the definition in (54), (89) and (90) can be restated
as

(91)

It is noted that can take any real value by selecting appropriate
and infinitesimally small values for .

From (55), it is concluded that in order for the conditions in (91)
to hold,

(92)

must be satisfied , which is the first condition in The-
orem 5.

In addition to (92), one of the following conditions should be
satisfied for the improvability conditions in (91) to hold:

• When or , as stated in the first part of
the second condition in Theorem 5, all the second terms
in (91) (namely, ) are either all
non-negative or all non-positive. Therefore, there always
exists a that satisfies the improvability conditions in (91)
when the first condition in Theorem 5 [cf. (92)] is satisfied.

• When is a positive even number and , (91)
can be expressed, after some manipulation, as

(93)

(94)

for all , and

(95)

for all . Note that (94) and (95) are obtained by
multiplying (91) by , which is a posi-
tive (negative) quantity when since
is even. The condition in (93) is satisfied due to the first
condition in Theorem 5. In addition, under the condition
in (58), there always exists a that satisfies the improv-
ability conditions in (94) and (95).

• When is an odd number and , (91) can be
expressed by three conditions as in (93)–(95) with the only
difference being that the signs of the inequalities in (94)
and (95) are switched. In that case, the first condition [cf.
(93)] is satisfied due to the first condition in Theorem 5.
Also, under the condition in (59), there always exists a
that satisfies the second and third conditions.

E. Proof of Corollary 1

Consider the proof of Theorem 5 above. Since
, the right-hand-side of (88) becomes

infinity for any . Therefore, we can consider the condition in
(87) only; that is,

(96)

In terms of the gradient and the Hessian of at ,
(96) becomes . Since can take any real value
by definition (cf. Appendix D) and can be chosen arbitrarily
small, the improvability condition can always be satisfied if

. On the other hand, if , then the improvability condition
becomes . If is not convex around
is not positive semidefinite. Therefore, there exists such that

is satisfied; hence, the detector is improvable.
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