33 research outputs found
Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling
International audienceThe largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001). Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO) during INDOEX, the Northwest Pacific Ocean (NWP) during ACE-Asia, and the Northwest Atlantic Ocean (NWA) during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth (AOD), and direct radiative effect of aerosols (DRE ? change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative transfer calculations by observational inputs increases the clear-sky, 24-h averaged AOD (34±8%), top of atmosphere (TOA) DRE (32±12%), and TOA direct climate forcing of aerosols (DCF ? change in radiative flux due to anthropogenic aerosols) (37±7%) relative to values obtained with "a priori" parameterizations of aerosol loadings and properties (GFDL RTM). The resulting constrained TOA DCF is ?3.3±0.47, ?14±2.6, ?6.4±2.1 Wm?2 for the NIO, NWP, and NWA, respectively. Constraining the radiative transfer calculations by observational inputs reduces the uncertainty range in the DCF in these regions relative to global IPCC (2001) estimates by a factor of approximately 2. Such comparisons with observations and resultant reductions in uncertainties are essential for improving and developing confidence in climate model calculations incorporating aerosol forcing
Observation of gravitational waves from the coalescence of a 2.5â4.5 M â compact object and a neutron star
We report the observation of a coalescing compact binary with component masses 2.5â4.5 M â and 1.2â2.0 M â (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGOâVirgoâKAGRA detector network on 2023 May 29 by the LIGO Livingston observatory. The primary component of the source has a mass less than 5 M â at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We provisionally estimate a merger rate density of 55â47+127Gpcâ3yrâ1 for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron starâblack hole merger, GW230529_181500-like sources may make up the majority of neutron starâblack hole coalescences. The discovery of this system implies an increase in the expected rate of neutron starâblack hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap
Impure infrared vortex driven high harmonic generation
International audienceWe demonstrate that high harmonic generation when driven by vortex driver contaminated with various orbital angular momentum (OAM) modes, the upconverted EUV harmonic deviates from perturbative conversion law to exhibit a spectrum of OAM orders
Gain dynamics in quickly ionized plasma for seeded operated soft x-ray lasers
International audienceHarmonic seeded operation of a neon-like titanium plasma-based soft x-ray laser is described. The plasma amplifier is pumped with a variation of the grazing incidence technique involving a fast and localized ionization step. We discuss its effect on gain dynamics by measuring the amplifying factor as a function of the delay between pump pulse and harmonic seed. Two different regimes are pointed out, following the pumping scheme used. For one of them, a delay in the gain generation compared with the pumping laser pulse is observed. (C) 2015 Optical Society of Americ
A start to end simulation of the laser plasma wakefield acceleration experiment at ESCULAP
10.18429/JACoW-IPAC2018-TUPML079International audienceWe present a start to end (s2e) simulation of the Laser-plasma Wakefield Accelerator (LPWA) foreseen as the ESCULAP project. We use a photo injector to produce a 5MeV 10pC electron bunch with a duration of ~ 1 ps RMS, it is boosted to 10MeV by a S-band cavity and then compressed to 74 fs RMS (30 fs FWHM) by a magnetic compression chicane (dogleg). After the dogleg, a quadrupole doublet and a triplet are utilized to match the Twiss parameters before injecting into the subsequent plasma wakefield. A 40 TW laser is used to excite plasma wakefield in the 10 cm plasma cell. An optimized configuration has been determined yielding at the plasma exit an electron beam at 180 MeV with energy spread of ~ 4.2%, an angular divergence of 0.6 mrad and a duration of 4 fs
Mixing between a stratospheric intrusion and a biomass burning plume
International audienceOzone, carbon monoxide, aerosol extinction coefficient, acetonitrile, nitric acid and relative humidity measured from the NOAA P3 aircraft during the TexAQS/GoMACCS 2006 experiment, indicate mixing between a biomass burning plume and a stratospheric intrusion in the free troposphere above eastern Texas. Lagrangian-based transport analysis and satellite imagery are used to investigate the transport mechanisms that bring together the tropopause fold and the biomass burning plume originating in southern California, which may affect the chemical budget of tropospheric trace gases