40 research outputs found

    Brain region-specific amyloid plaque-associated myelin lipid loss, APOE deposition and disruption of the myelin sheath in familial Alzheimer\u27s disease mice

    Get PDF
    There is emerging evidence that amyloid beta (A beta) aggregates forming neuritic plaques lead to impairment of the lipid-rich myelin sheath and glia. In this study, we examined focal myelin lipid alterations and the disruption of the myelin sheath associated with amyloid plaques in a widely used familial Alzheimer\u27s disease (AD) mouse model; 5xFAD. This AD mouse model has A beta(42) peptide-rich plaque deposition in the brain parenchyma. Matrix-assisted laser desorption/ionization imaging mass spectrometry of coronal brain tissue sections revealed focal A beta plaque-associated depletion of multiple myelin-associated lipid species including sulfatides, galactosylceramides, and specific plasmalogen phopshatidylethanolamines in the hippocampus, cortex, and on the edges of corpus callosum. Certain phosphatidylcholines abundant in myelin were also depleted in amyloid plaques on the edges of corpus callosum. Further, lysophosphatidylethanolamines and lysophosphatidylcholines, implicated in neuroinflammation, were found to accumulate in amyloid plaques. Double staining of the consecutive sections with fluoromyelin and amyloid-specific antibody revealed amyloid plaque-associated myelin sheath disruption on the edges of the corpus callosum which is specifically correlated with plaque-associated myelin lipid loss only in this region. Further, apolipoprotein E, which is implicated in depletion of sulfatides in AD brain, is deposited in all the A beta plaques which suggest apolipoprotein E might mediate sulfatide depletion as a consequence of an immune response to A beta deposition. This high-spatial resolution matrix-assisted laser desorption/ionization imaging mass spectrometry study in combination with (immuno) fluorescence staining of 5xFAD mouse brain provides new understanding of morphological, molecular and immune signatures of A beta plaque pathology-associated myelin lipid loss and myelin degeneration in a brain region-specific manner

    Quantitative Proteomic Analysis of MCM3 in ThinPrep Samples of Patients with Cervical Preinvasive Cancer

    Get PDF
    Triage methods for cervical cancer detection show moderate accuracy and present considerable false-negative and false-positive result rates. A complementary diagnostic parameter could help improve the accuracy of identifying patients who need treatment. A pilot study was performed using a targeted proteomics approach with opportunistic ThinPrep samples obtained from women collected at the hospital’s outpatient clinic to determine the concentration levels of minichromosome maintenance-3 (MCM3) and envoplakin (EVPL) proteins. Forty samples with ‘negative for intraepithelial lesion or malignancy’ (NILM), 21 samples with ‘atypical squamous cells of undetermined significance’ (ASC-US), and 33 samples with ‘low-grade squamous intraepithelial lesion and worse’ (≥LSIL) were analyzed, using cytology and the patients’ histology reports. Highly accurate concordance was obtained for gold-standard-confirmed samples, demonstrating that the MCM3/EVPL ratio can discriminate between non-dysplastic and dysplastic samples. On that account, we propose that MCM3 and EVPL are promising candidate protein biomarkers for population-based cervical cancer screening.</p

    Platelets Proteomic Profiles of Acute Ischemic Stroke Patients.

    No full text
    Platelets play a crucial role in the pathogenesis of stroke and antiplatelet agents exist for its treatment and prevention. Through the use of LC-MS based protein expression profiling, platelets from stroke patients were analyzed and then correlated with the proteomic analyses results in the context of this disease. This study was based on patients who post ischemic stroke were admitted to hospital and had venous blood drawn within 24 hrs of the incidence. Label-free protein expression analyses of the platelets' tryptic digest was performed in triplicate on a UPLC-ESI-qTOF-MS/MS system and ProteinLynx Global Server (v2.5, Waters) was used for tandem mass data extraction. The peptide sequences were searched against the reviewed homo sapiens database (www.uniprot.org) and the quantitation of protein variation was achieved through Progenesis LC-MS software (V4.0, Nonlinear Dynamics). These Label-free differential proteomics analysis of platelets ensured that 500 proteins were identified and 83 of these proteins were found to be statistically significant. The differentially expressed proteins are involved in various processes such as inflammatory response, cellular movement, immune cell trafficking, cell-to-cell signaling and interaction, hematological system development and function and nucleic acid metabolism. The expressions of myeloperoxidase, arachidonate 12-Lipoxygenase and histidine-rich glycoprotein are involved in cellular metabolic processes, crk-like protein and ras homolog gene family member A involved in cell signaling with vitronectin, thrombospondin 1, Integrin alpha 2b, and integrin beta 3 involved in cell adhesion. Apolipoprotein H, immunoglobulin heavy constant gamma 1 and immunoglobulin heavy constant gamma 3 are involved in structural, apolipoprotein A-I, and alpha-1-microglobulin/bikunin precursor is involved in transport, complement component 3 and clusterin is involved in immunity proteins as has been discussed. Our data provides an insight into the proteins that are involved in the platelets' activation response during ischemic stroke. It could be argued that this study lays the foundation for future mechanistic studies

    Detection of proteomic alterations at different stages in a Huntington's disease mouse model via matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging

    No full text
    Huntington's disease (HD) is a progressive and irreversible neurodegenerative disease leading to the inability to carry out daily activities and for which no cure exists. The underlying mechanisms of the disease have not been fully elucidated yet. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) allows the spatial information of proteins to be obtained upon the tissue sections without homogenisation. In this study, we aimed to examine proteomic alterations in the brain tissue of an HD mouse model with MALDI-MSI coupled to LC–MS/MS system. We used 3-, 6- and 12-month-old YAC128 mice representing pre-stage, mild stage and pathological stage of the HD and their non-transgenic littermates, respectively. The intensity levels of 89 proteins were found to be significantly different in YAC128 in comparison to their control mice in the pre-stage, 83 proteins in the mild stage, and 82 proteins in the pathological stage. Among them, Tau, EF2, HSP70, and NogoA proteins were validated with western blot analysis. In conclusion, the results of this study have provided remarkable new information about the spatial proteomic alterations in the HD mouse model, and we suggest that MALDI-MSI is an excellent technique for identifying such regional proteomic changes and could offer new perspectives in examining complex diseases

    A novel method to differentiate bovine and porcine gelatins in food products: NanoUPLC-ESI-Q-TOF-MSE based data independent acquisition technique to detect marker peptides in gelatin

    No full text
    We presented a novel nanoUPLC-MSE workflow method that has potential to identify origin of gelatin in some dairy products; yoghurt, cheese and ice cream. In this study, the method was performed in two steps. In the first step, gelatin was extracted from these products before the MS-sample preparation. In the second step, tryptic gelatin peptides were separated and analyzed with ultra-performance liquid chromatography and electrospray ionization quadrupole time-of-flight mass spectrometry (nanoUPLC-ESI-q- TOF-MSE). The novelty of this setup was that it functioned in a data independent acquisition mode and that alternate low and elevated collision energy was applied to acquire precursor and product ion information. This enabled accurate mass acquisition on the peptide level to identify the gelatin peptides. The marker peptides specific for porcine and bovine could be successfully detected in the gelatin added to the dairy products analyzed, revealing that the detection of marker peptides in the digested gelatin samples using nanoUPLC-ESI-q-TOF-MSE could be an effective method to differentiate porcine and bovine gelatin in the dairy products. (C) 2013 Elsevier Ltd. All rights reserved
    corecore