7,113 research outputs found

    State recommendations on approaches to LANDSAT

    Get PDF
    The feasibility of continuing the LANDSAT program is contingent upon the success of the technology transfer process to state and local governments. The focus of these concerns can be generally expressed in terms of these issue areas: (1) user needs, in terms of awareness, technical capabilities, and training; (2) product availability and pricing; and (3) roles and communication links, in terms of federal and state governments, the private sector, and the universities. The perspective of the states on these issues are classified. Where possible, alternative strategies for accomplishing the satellite technology transfer for effective state implementation are suggested. Those suggestions are based on the recommendations offered by the state and local user community

    Poly(ADP-ribose) Polymerase-1 (PARP1) in Atherosclerosis: From Molecular Mechanisms to Therapeutic Potential

    Get PDF
    Poly(ADP-ribosyl)ation reactions, carried out by poly(ADP-ribose) polymerases (PARPs/ARTDs), are reversible posttranslational modifications impacting on numerous cellular processes (e.g., DNA repair, transcription, metabolism, or immune functions). PARP1 (EC 2.4.2.30), the founding member of PARPs, is particularly important for drug development for its role in DNA repair, cell death, and transcription of proinflammatory genes. Recent studies have established a novel concept that PARP1 is critically involved in the formation and destabilization of atherosclerotic plaques in experimental animal models and in humans. Reduction of PARP1 activity by pharmacological or molecular approaches attenuates atherosclerotic plaque development and enhances plaque stability as well as promotes the regression of pre-established atherosclerotic plaques. Mechanistically, PARP1 inhibition significantly reduces monocyte differentiation, macrophage recruitment, Sirtuin 1 (SIRT1) inactivation, endothelial dysfunction, neointima formation, foam cell death, and inflammatory responses within plaques, all of which are central to the pathogenesis of atherosclerosis. This article presents an overview of the multiple roles and underlying mechanisms of PARP1 activation (poly(ADP-ribose) accumulation) in atherosclerosis and emphasizes the therapeutic potential of PARP1 inhibition in preventing or reversing atherosclerosis and its cardiovascular clinical sequalae

    Beyond single-photon localization at the edge of a Photonic Band Gap

    Get PDF
    We study spontaneous emission in an atomic ladder system, with both transitions coupled near-resonantly to the edge of a photonic band gap continuum. The problem is solved through a recently developed technique and leads to the formation of a ``two-photon+atom'' bound state with fractional population trapping in both upper states. In the long-time limit, the atom can be found excited in a superposition of the upper states and a ``direct'' two-photon process coexists with the stepwise one. The sensitivity of the effect to the particular form of the density of states is also explored.Comment: to appear in Physical Review

    Subobject Detection through Spatial Relationships on Mobile Phones

    Get PDF
    We present a novel image classification technique for detecting multiple objects (called subobjects) in a single image. In addition to image classifiers, we apply spatial relationships among the subobjects to verify and to predict locations of detected and undetected subobjects, respectively. By continuously refining the spatial relationships throughout the detection process, even locations of completely occluded exhibits can be determined. Finally, all detected subobjects are labeled and the user can select the object of interest for retrieving corresponding multimedia information. This approach is applied in the context of PhoneGuide, an adaptive museum guidance system for camera-equipped mobile phones. We show that the recognition of subobjects using spatial relationships is up to 68% faster than related approaches without spatial relationships. Results of a field experiment in a local museum illustrate that unexperienced users reach an average recognition rate for subobjects of 85.6% under realistic conditions

    Multi-layer Architecture For Storing Visual Data Based on WCF and Microsoft SQL Server Database

    Full text link
    In this paper we present a novel architecture for storing visual data. Effective storing, browsing and searching collections of images is one of the most important challenges of computer science. The design of architecture for storing such data requires a set of tools and frameworks such as SQL database management systems and service-oriented frameworks. The proposed solution is based on a multi-layer architecture, which allows to replace any component without recompilation of other components. The approach contains five components, i.e. Model, Base Engine, Concrete Engine, CBIR service and Presentation. They were based on two well-known design patterns: Dependency Injection and Inverse of Control. For experimental purposes we implemented the SURF local interest point detector as a feature extractor and KK-means clustering as indexer. The presented architecture is intended for content-based retrieval systems simulation purposes as well as for real-world CBIR tasks.Comment: Accepted for the 14th International Conference on Artificial Intelligence and Soft Computing, ICAISC, June 14-18, 2015, Zakopane, Polan

    Non-Markovian Decay of a Three Level Cascade Atom in a Structured Reservoir

    Get PDF
    We present a formalism that enables the study of the non-Markovian dynamics of a three-level ladder system in a single structured reservoir. The three-level system is strongly coupled to a bath of reservoir modes and two quantum excitations of the reservoir are expected. We show that the dynamics only depends on reservoir structure functions, which are products of the mode density with the coupling constant squared. This result may enable pseudomode theory to treat multiple excitations of a structured reservoir. The treatment uses Laplace transforms and an elimination of variables to obtain a formal solution. This can be evaluated numerically (with the help of a numerical inverse Laplace transform) and an example is given. We also compare this result with the case where the two transitions are coupled to two separate structured reservoirs (where the example case is also analytically solvable)

    Face Detection with Effective Feature Extraction

    Full text link
    There is an abundant literature on face detection due to its important role in many vision applications. Since Viola and Jones proposed the first real-time AdaBoost based face detector, Haar-like features have been adopted as the method of choice for frontal face detection. In this work, we show that simple features other than Haar-like features can also be applied for training an effective face detector. Since, single feature is not discriminative enough to separate faces from difficult non-faces, we further improve the generalization performance of our simple features by introducing feature co-occurrences. We demonstrate that our proposed features yield a performance improvement compared to Haar-like features. In addition, our findings indicate that features play a crucial role in the ability of the system to generalize.Comment: 7 pages. Conference version published in Asian Conf. Comp. Vision 201

    Nanopatterning of epitaxial CoSi₂ using oxidation in a local stress field and fabrication of nanometer metal-oxide-semiconductor field-effect transistors

    No full text
    A patterning method for the generation of epitaxialCoSi₂nanostructures was developed based on anisotropic diffusion of Co∕Si atoms in a stress field during rapid thermal oxidation (RTO). The stress field is generated along the edge of a mask consisting of a thin SiO₂ layer and a Si₃N₄ layer. During RTO of the masked silicide structure, a well-defined separation of the silicide layer forms along the edge of the mask. The technique was used to make 50-nm channel-length metal-oxide-semiconductor field-effect transistors(MOSFETs). These highly uniform gaps define the channel region of the fabricated device. Two types of MOSFETs have been fabricated: symmetric transistor structures, using the separated silicide layers as Schottky source and drain, and asymmetric transistors, with n+ source and Schottky drain. The asymmetric transistors were fabricated by an ion implantation into the unprotected CoSi₂ layer and a subsequent out diffusion to form the n+ source. The detailed fabrication process as well as the I–V characteristics of both the symmetric and asymmetric transistor structures will be presented
    • 

    corecore