14 research outputs found

    Processing second-order stochastic dominance models using cutting-plane representations

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2011 Springer-VerlagSecond-order stochastic dominance (SSD) is widely recognised as an important decision criterion in portfolio selection. Unfortunately, stochastic dominance models are known to be very demanding from a computational point of view. In this paper we consider two classes of models which use SSD as a choice criterion. The first, proposed by Dentcheva and Ruszczyński (J Bank Finance 30:433–451, 2006), uses a SSD constraint, which can be expressed as integrated chance constraints (ICCs). The second, proposed by Roman et al. (Math Program, Ser B 108:541–569, 2006) uses SSD through a multi-objective formulation with CVaR objectives. Cutting plane representations and algorithms were proposed by Klein Haneveld and Van der Vlerk (Comput Manage Sci 3:245–269, 2006) for ICCs, and by Künzi-Bay and Mayer (Comput Manage Sci 3:3–27, 2006) for CVaR minimization. These concepts are taken into consideration to propose representations and solution methods for the above class of SSD based models. We describe a cutting plane based solution algorithm and outline implementation details. A computational study is presented, which demonstrates the effectiveness and the scale-up properties of the solution algorithm, as applied to the SSD model of Roman et al. (Math Program, Ser B 108:541–569, 2006).This study was funded by OTKA, Hungarian National Fund for Scientific Research, project 47340; by Mobile Innovation Centre, Budapest University of Technology, project 2.2; Optirisk Systems, Uxbridge, UK and by BRIEF (Brunel University Research Innovation and Enterprise Fund)

    Poly(ADP-ribose) polymerase-2 depletion reduces doxorubicin-induced damage through SIRT1 induction

    No full text
    AIMS: Doxorubicin (DOX) is widely used in cytostatic treatments, although it may cause cardiovascular dysfunction as a side effect. DOX treatment leads to enhanced free radical production that in turn causes DNA strand breakage culminating in poly(ADP-ribose) polymerase (PARP) activation and mitochondrial and cellular dysfunction. DNA nicks can activate numerous enzymes, such as PARP-2. Depletion of PARP-2 has been shown to result in a protective phenotype against free radical-mediated diseases, suggesting similar properties in the case of DOX-induced vascular damage. METHODS AND RESULTS: PARP-2(+/+) and PARP-2(-/-) mice and aortic smooth muscle (MOVAS) cells were treated with DOX (25 mg/kg or 3 μM, respectively). Aortas were harvested 2-day post-treatment while MOVAS cells were treated with DOX for 7 hours. Aortas from PARP-2(-/-) mice displayed partial protection against DOX toxicity, and the protection depended on the conservation of smooth muscle but not on the conservation of endothelial function. DOX treatment evoked free radical production, DNA breakage and PARP activation. Importantly, depletion of PARP-2 did not quench any of these phenomena, suggesting an alternative mechanism. Depletion of PARP-2 prevented DOX-induced mitochondrial dysfunction through SIRT1 activation. Genetic deletion of PARP-2 resulted in the induction of the SIRT1 promoter and consequently increased SIRT1 expression both in aortas and in MOVAS cells. SIRT1 activation enhanced mitochondrial biogenesis, which provided protection against DOX-induced mitochondrial damage. CONCLUSION: Our data identify PARP-2 as a mediator of DOX toxicity by regulating vascular SIRT1 activity and mitochondrial biogenesis. Moreover, to the best of our knowledge, this is the first report of SIRT1 as a protective factor in the vasculature upon oxidative stress

    Cytoprotective dibenzoylmethane derivatives protect cells from oxidative stress-induced necrotic cell death

    No full text
    Screening of a small in-house library of 1863 compounds identified 29 compounds that protected Jurkat cells from hydrogen peroxide-induced cytotoxicity. From the cytoprotective compounds eleven proved to possess antioxidant activity (ABTS radical scavenger effect) and two were found to inhibit poly(ADP-ribosyl)ation (PARylation), a cytotoxic pathway operating in severely injured cells. Four cytoprotective dibenzoylmethane (DBM) derivatives were investigated in more detail as they did not scavenge hydrogen peroxide nor did they inhibit PARylation. These compounds protected cells from necrotic cell death while caspase activation, a parameter of apoptotic cell death was not affected. Hydrogen peroxide activated extracellular signal regulated kinase (ERK1/2) and p38 MAP kinases but not c-Jun N-terminal kinase (JNK). The cytoprotective DBMs suppressed the activation of Erk1/2 but not that of p38. Cytoprotection was confirmed in another cell type (A549 lung epithelial cells), indicating that the cytoprotective effect is not cell type specific. In conclusion we identified DBM analogs as a novel class of cytoprotective compounds inhibiting ERK1/2 kinase and protecting from necrotic cell death by a mechanism independent of poly(ADP-ribose) polymerase inhibition

    Identification of Bacterial Metabolites Modulating Breast Cancer Cell Proliferation and Epithelial-Mesenchymal Transition

    No full text
    Breast cancer patients are characterized by the oncobiotic transformation of multiple microbiome communities, including the gut microbiome. Oncobiotic transformation of the gut microbiome impairs the production of antineoplastic bacterial metabolites. The goal of this study was to identify bacterial metabolites with antineoplastic properties. We constructed a 30-member bacterial metabolite library and screened the library compounds for effects on cell proliferation and epithelial-mesenchymal transition. The metabolites were applied to 4T1 murine breast cancer cells in concentrations corresponding to the reference serum concentrations. However, yric acid, glycolic acid, d-mannitol, 2,3-butanediol, and trans-ferulic acid exerted cytostatic effects, and 3-hydroxyphenylacetic acid, 4-hydroxybenzoic acid, and vanillic acid exerted hyperproliferative effects. Furthermore, 3-hydroxyphenylacetic acid, 4-hydroxybenzoic acid, 2,3-butanediol, and hydrocinnamic acid inhibited epithelial-to-mesenchymal (EMT) transition. We identified redox sets among the metabolites (d-mannitol—d-mannose, 1-butanol—butyric acid, ethylene glycol—glycolic acid—oxalic acid), wherein only one partner within the set (d-mannitol, butyric acid, glycolic acid) possessed bioactivity in our system, suggesting that changes to the local redox potential may affect the bacterial secretome. Of the nine bioactive metabolites, 2,3-butanediol was the only compound with both cytostatic and anti-EMT properties
    corecore