235 research outputs found
Evaluating the performance of low-lignin transgenic bioenergy feedstocks in the field
Lignin in the cell walls of lignocellulosic biomass limits the accessibility of carbohydrates for breakdown into fermentable sugars and subsequently biofuels. The resistance of plant biomass to enzymatic or microbial deconstruction, known as biomass recalcitrance, can be overcome by reducing lignin content or modifying its composition through genetic modification of the lignin biosynthetic pathway. However, few studies to date have assessed the performance of low-lignin biofuel feedstocks under field conditions. Because lignin plays a vital role in several developmental and stress-related processes, characterization of these plants under the appropriate agronomic conditions is necessary to confirm that the improved biofuel-related traits can be maintained under field conditions without compromising plant growth or susceptibility to stresses. The general goal of this thesis project was to gain a better understanding of how lignin-modified feedstocks might perform in the field. The first chapter provides an introduction on the use of lignocellulosic biomass for biofuel production, the significance of lignin engineering for improving biofuel yields, and the importance of field trials to validate greenhouse results in a more realistic environmental setting. Chapter two is a review of the consequences of altered lignin biosynthesis on plant susceptibility to biotic and abiotic stresses. Chapter three reports the results of a two-year field evaluation of reduced recalcitrance transgenic switchgrass for chemical composition, sugar release, ethanol yield, agronomic performance, and disease susceptibility
Specialized Knowledge Transfer: Accelerating the Expertise Development Cycle
AbstractOne of the biggest challenges facing organizations is how to capture the knowledge of departing experts and transfer it effectively to their successors. Without effective knowledge transfer, valuable lessons learned and best practices are lost. This is especially difficult in two situations—at senior levels and with positions that are niche specialties. While many organizations have learned to capture tacit knowledge at lower levels, they still struggle transferring the senior-level and specialty knowledge into learning. This paper looks at a case study of more than 100 top-level executives, engineers, and scientists at Fortune 500 companies and military organizations. It outlines an effective process for enhancing knowledge transfer at the senior levels, including methods to capture tacit knowledge more effectively and empower leaders to retrieve that knowledge in a way that promotes effective learning. This paper also discusses the impact of levels of expertise on knowledge transfer. Best practices are identified for capturing specialty knowledge, analyzing and documenting key knowledge, and multiple methods to transfer knowledge both one-on-one and as larger scale training to accelerate the expertise development cycle
A high-throughput transient gene expression system for switchgrass (Panicum virgatum L.) seedlings
<p>Abstract</p> <p>Background</p> <p>Grasses are relatively recalcitrant to genetic transformation in comparison to certain dicotyledons, yet they constitute some of the most important biofuel crops. Genetic transformation of switchgrass (<it>Panicum virgatum </it>L.) has previously been reported after cocultivation of explants with <it>Agrobacterium </it>and biolistics of embryogenic calli. Experiments to increase transient gene expression <it>in planta </it>may lead to stable transformation methods with increased efficiency.</p> <p>Results</p> <p>A high-throughput <it>Agrobacterium</it>-mediated transient gene expression system has been developed for <it>in planta </it>inoculation of germinating switchgrass seedlings. Four different <it>Agrobacterium </it>strains were compared for their ability to infect switchgrass seedlings, and strain AGL1 was found to be the most infective. Wounding pretreatments such as sonication, mixing by vortex with carborundum, separation by centrifugation, vacuum infiltration, and high temperature shock significantly increased transient expression of a reporter gene (GUSPlus, a variation of the β-glucuronidase (GUS) gene). The addition of L-cysteine and dithiothreitol in the presence of acetosyringone significantly increased GUS expression compared with control treatments, whereas the addition of 0.1% surfactants such as Silwet L77 or Li700 decreased GUS expression. 4-Methylumbelliferyl beta-D-galactopyranoside (MUG) assays showed a peak of β-glucuronidase (GUS) enzyme activity 3 days after cocultivation with <it>Agrobacterium </it>harboring pCambia1305.2, whereas MUG assays showed a peak of enzyme activity 5 days after cocultivation with <it>Agrobacterium </it>harboring pCambia1305.1.</p> <p>Conclusion</p> <p><it>Agrobacterium </it>strains C58, GV3101 and EHA105 are less able to deliver transfer DNA to switchgrass seedlings (cultivar Alamo) compared with strain AGL1. Transient expression was increased by double or triple wounding treatments such as mixing by vortex with carborundum, sonication, separation by centrifugation, and heat shock. The addition of thiol compounds such as L-cysteine and dithiothreitol in combination with acetosyringone during cocultivation also increased transient expression. The combination of multiple wounding treatments along with the addition of thiol compounds during cocultivation increased transient expression levels from 6% to 54%. There were differences in temporal GUS expression induced by pCambia1305.1 and pCambia1305.2.</p
Recommended from our members
Timescale separation and models of symbiosis: state space reduction, multiple attractors and initialization.
Dynamic Energy Budget models relate whole organism processes such as growth, reproduction and mortality to suborganismal metabolic processes. Much of their potential derives from extensions of the formalism to describe the exchange of metabolic products between organisms or organs within a single organism, for example the mutualism between corals and their symbionts. Without model simplification, such models are at risk of becoming parameter-rich and hence impractical. One natural simplification is to assume that some metabolic processes act on fast timescales relative to others. A common strategy for formulating such models is to assume that fast processes equilibrate immediately, while slow processes are described by ordinary differential equations. This strategy can bring a subtlety with it. What if there are multiple, interdependent fast processes that have multiple equilibria, so that additional information is needed to unambiguously specify the model dynamics? This situation can easily arise in contexts where an organism or community can persist in a healthy or an unhealthy state with abrupt transitions between states possible. To approach this issue, we offer the following: (a) a method to unambiguously complete implicitly defined models by adding hypothetical fast state variables; (b) an approach for minimizing the number of additional state variables in such models, which can simplify the numerical analysis and give insights into the model dynamics; and (c) some implications of the new approach that are of practical importance for model dynamics, e.g. on the bistability of flux dynamics and the effect of different initialization choices on model outcomes. To demonstrate those principles, we use a simplified model for root-shoot dynamics of plants and a related model for the interactions between corals and endosymbiotic algae that describes coral bleaching and recovery
Field-Grown Transgenic Switchgrass (Panicum virgatum L.) with Altered Lignin Does Not Affect Soil Chemistry, Microbiology, and Carbon Storage Potential
Cell wall recalcitrance poses a major challenge on cellulosic biofuel production from feedstocks such as switchgrass (Panicum virgatum L.). As lignin is a known contributor of recalcitrance, transgenic switchgrass plants with altered lignin have been produced by downregulation of caffeic acid O-methyltransferase (COMT). Field trials of COMT-downregulated plants previously demonstrated improved ethanol conversion with no adverse agronomic effects. However, the rhizosphere impacts of altering lignin in plants are unknown. We hypothesized that changing plant lignin composition may affect residue degradation in soils, ultimately altering soil processes. The objective of this study was to evaluate effects of two independent lines of COMT-downregulated switchgrass plants on soils in terms of chemistry, microbiology, and carbon cycling when grown in the field. Over the first two years of establishment, we observed no significant differences between transgenic and control plants in terms of soil pH or the total concentrations of 19 elements. An analysis of soil bacterial communities via high-throughput 16S rRNA gene amplicon sequencing revealed no effects of transgenic plants on bacterial diversity, richness, or community composition. We also did not observe a change in the capacity for soil carbon storage: There was no significant effect on soil respiration or soil organic matter. After five years of establishment, δ13C of plant roots, leaves, and soils was measured and an isotopic mixing model used to estimate that 11.2 to 14.5% of soil carbon originated from switchgrass. Switchgrass-contributed carbon was not significantly different between transgenic and control plants. Overall, our results indicate that over the short term (two and five years), lignin modification in switchgrass through manipulation of COMT expression does not have an adverse effect on soils in terms of total elemental composition, bacterial community structure and diversity, and capacity for carbon storage
Transgenic miR156 Switchgrass in the Field: Growth, Recalcitrance and Rust Susceptibility
Sustainable utilization of lignocellulosic perennial grass feedstocks will be enabled by high biomass production and optimized cell wall chemistry for efficient conversion into biofuels. MicroRNAs are regulatory elements that modulate the expression of genes involved in various biological functions in plants, including growth and development. In greenhouse studies, overexpressing a microRNA (miR156) gene in switchgrass had dramatic effects on plant architecture and flowering, which appeared to be driven by transgene expression levels. Highexpressing lines were extremely dwarfed, whereas low and moderate-expressing lines had higher biomass yields, improved sugar release and delayed flowering. Four lines with moderate or low miR156 overexpression from the prior greenhouse study were selected for a field experiment to assess the relationship between miR156 expression and biomass production over three years. We also analysed important bioenergy feedstock traits such as flowering, disease resistance, cell wall chemistry and biofuel production. Phenotypes of the transgenic lines were inconsistent between the greenhouse and the field as well as among different field growing seasons. One low expressing transgenic line consistently produced more biomass (25%–56%) than the control across all three seasons, which translated to the production of 30% more biofuel per plant during the final season. The other three transgenic lines produced less biomass than the control by the final season, and the two lines with moderate expression levels also exhibited altered disease susceptibilities. Results of this study emphasize the importance of performing multiyear field studies for plants with altered regulatory transgenes that target plant growth and development
Effect of the Glycemic Index of Carbohydrates on Acne vulgaris
Acne vulgaris may be improved by dietary factors that increase insulin sensitivity. We hypothesized that a low-glycemic index diet would improve facial acne severity and insulin sensitivity. Fifty-eight adolescent males (mean age ± standard deviation 16.5 ± 1.0 y and body mass index 23.1 ± 3.5 kg/m2) were alternately allocated to high or low glycemic index diets. Severity of inflammatory lesions on the face, insulin sensitivity (homeostasis modeling assessment of insulin resistance), androgens and insulin-like growth factor-1 and its binding proteins were assessed at baseline and at eight weeks, a period corresponding to the school term. Forty-three subjects (n = 23 low glycemic index and n = 20 high glycemic index) completed the study. Diets differed significantly in glycemic index (mean ± standard error of the mean, low glycemic index 51 ± 1 vs. high glycemic index 61 ± 2, p = 0.0002), but not in macronutrient distribution or fiber content. Facial acne improved on both diets (low glycemic index −26 ± 6%, p = 0.0004 and high glycemic index −16 ± 7%, p = 0.01), but differences between diets did not reach significance. Change in insulin sensitivity was not different between diets (low glycemic index 0.2 ± 0.1 and high glycemic index 0.1 ± 0.1, p = 0.60) and did not correlate with change in acne severity (Pearson correlation r = −0.196, p = 0.244). Longer time frames, greater reductions in glycemic load or/and weight loss may be necessary to detect improvements in acne among adolescent boys
Downregulation of a UDP-Arabinomutase Gene in Switchgrass (Panicum virgatum L.) Results in Increased Cell Wall Lignin While Reducing Arabinose-Glycans
Background: Switchgrass (Panicum virgatum L.) is a C4 perennial prairie grass and a dedicated feedstock for lignocellulosic biofuels. Saccharification and biofuel yields are inhibited by the plant cell wall’s natural recalcitrance against enzymatic degradation. Plant hemicellulose polysaccharides such as arabinoxylans structurally support and cross-link other cell wall polymers. Grasses predominately have Type II cell walls that are abundant in arabinoxylan, which comprise nearly 25% of aboveground biomass. A primary component of arabinoxylan synthesis is uridine diphosphate (UDP) linked to arabinofuranose (Araf). A family of UDP-arabinopyranose mutase (UAM)/reversible glycosylated polypeptides catalyze the interconversion between UDP-arabinopyranose (UDP-Arap) and UDP-Araf.
Results: The expression of a switchgrass arabinoxylan biosynthesis pathway gene, PvUAM1, was decreased via RNAi to investigate its role in cell wall recalcitrance in the feedstock. PvUAM1 encodes a switchgrass homolog of UDP-arabinose mutase, which converts UDP-Arap to UDP-Araf. Southern blot analysis revealed each transgenic line contained between one to at least seven T-DNA insertions, resulting in some cases, a 95% reduction of native PvUAM1 transcript in stem internodes. Transgenic plants had increased pigmentation in vascular tissues at nodes, but were otherwise similar in morphology to the non-transgenic control. Cell wall-associated arabinose was decreased in leaves and stems by over 50%, but there was an increase in cellulose. In addition, there was a commensurate change in arabinose side chain extension. Cell wall lignin composition was altered with a concurrent increase in lignin content and transcript abundance of lignin biosynthetic genes in mature tillers. Enzymatic saccharification efficiency was unchanged in the transgenic plants relative to the control.
Conclusion: Plants with attenuated PvUAM1 transcript had increased cellulose and lignin in cell walls. A decrease in cell wall-associated arabinose was expected, which was likely caused by fewer Araf residues in the arabinoxylan. The decrease in arabinoxylan may cause a compensation response to maintain cell wall integrity by increasing cellulose and lignin biosynthesis. In cases in which increased lignin is desired, e.g., feedstocks for carbon fiber production, downregulated UAM1 coupled with altered expression of other arabinoxylan biosynthesis genes might result in even higher production of lignin in biomass
- …