5,570 research outputs found

    Clinical and biochemical improvements in a patient with MNGIE following enzyme replacement.

    Get PDF
    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare autosomal recessive metabolic disorder caused by a deficiency of thymidine phosphorylase (TP, EC2.4.2.4) due to mutations in the nuclear gene TYMP. TP deficiency leads to plasma and tissue accumulations of thymidine and deoxyuridine which generate imbalances within the mitochondrial nucleotide pools, ultimately leading to mitochondrial dysfunction.1 MNGIE is characterized clinically by leukoencephalopathy, external ophthalmoplegia, peripheral polyneuropathy, cachexia, and enteric neuromyopathy manifesting as gastrointestinal dysmotility. The condition is relentlessly progressive, with patients usually dying from a combination of nutritional and neuromuscular failure at an average age of 37 years.2 Allogeneic hematopoietic stem cell transplantation (AHSCT) offers a permanent cure. Clinical and biochemical improvements following AHSCT have been reported but it carries a high mortality risk and is limited by matched donor availability.3 A consensus proposal for standardizing AHSCT recommends treatment of patients without irreversible end-stage disease and with an optimally matched donor; a majority of patients are ineligible and thus there is a critical requirement for an alternative treatment

    Prostate Biopsy Assistance System with Gland Deformation Estimation for Enhanced Precision

    Full text link
    Computer-assisted prostate biopsies became a very active research area during the last years. Prostate tracking makes it possi- ble to overcome several drawbacks of the current standard transrectal ultrasound (TRUS) biopsy procedure, namely the insufficient targeting accuracy which may lead to a biopsy distribution of poor quality, the very approximate knowledge about the actual location of the sampled tissues which makes it difficult to implement focal therapy strategies based on biopsy results, and finally the difficulty to precisely reach non-ultrasound (US) targets stemming from different modalities, statistical atlases or previous biopsy series. The prostate tracking systems presented so far are limited to rigid transformation tracking. However, the gland can get considerably deformed during the intervention because of US probe pres- sure and patient movements. We propose to use 3D US combined with image-based elastic registration to estimate these deformations. A fast elastic registration algorithm that copes with the frequently occurring US shadows is presented. A patient cohort study was performed, which yielded a statistically significant in-vivo accuracy of 0.83+-0.54mm.Comment: This version of the paper integrates a correction concerning the local similarity measure w.r.t. the proceedings (this typing error could not be corrected before editing the proceedings

    Evaluation of uncertainty in alignment tensors obtained from dipolar couplings

    No full text
    Residual dipolar couplings and their corresponding alignment tensors are useful for structural analysis of macromolecules. The error in an alignment tensor, derived from residual dipolar couplings on the basis of a known structure, is determined not only by the accuracy of the measured couplings but also by the uncertainty in the structure (structural noise). This dependence is evaluated quantitatively on the basis of simulated structures using Monte-Carlo type analyses. When large numbers of dipolar couplings are available, structural noise is found to result in a systematic underestimate of the magnitude of the alignment tensor. Particularly in cases where only few dipolar couplings are available, structural noise can cause significant errors in best-fitted alignment tensor values, making determination of the relative orientation of small fragments and evaluation of local backbone mobility from dipolar couplings difficult. An example for the protein ubiquitin demonstrates the inherent limitations in characterizing motions on the basis of local alignment tensor magnitudes

    Poor Outcome in a Mitochondrial Neurogastrointestinal Encephalomyopathy Patient with a Novel TYMP Mutation: The Need for Early Diagnosis.

    Get PDF
    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a devastating autosomal recessive disorder due to mutations in TYMP, which cause loss of function of thymidine phosphorylase (TP), nucleoside accumulation in plasma and tissues and mitochondrial dysfunction. The clinical picture includes progressive gastrointestinal dysmotility, cachexia, ptosis and ophthalmoparesis, peripheral neuropathy and diffuse leukoencephalopathy, which usually lead to death in early adulthood. Therapeutic options are currently available in clinical practice (allogeneic hematopoietic stem cell transplantation and carrier erythrocyte entrapped TP therapy) and newer, promising therapies are expected in the near future. However, successful treatment is strictly related to early diagnosis. We report on an incomplete MNGIE phenotype in a young man harboring the novel heterozygote c.199 C>T (Q67X) mutation in exon 2, and the previously reported c.866 A>C (E289A) mutation in exon 7 in TYMP. The correct diagnosis was achieved many years after the onset of symptoms and unfortunately, the patient died soon after diagnosis because of multiorgan failure due to severe malnutrition and cachexia before any therapeutic option could be tried. To date, early diagnosis is essential to ensure that patients have the opportunity to be treated. MNGIE should be suspected in all patients who present with both gastrointestinal and nervous system involvement, even if the classical complete phenotype is lacking

    Quantification of Plasma and Urine Thymidine and 2'-Deoxyuridine by LC-MS/MS for the Pharmacodynamic Evaluation of Erythrocyte Encapsulated Thymidine Phosphorylase in Patients with Mitochondrial Neurogastrointestinal Encephalomyopathy.

    Get PDF
    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare disorder caused by mutations in TYMP, leading to a deficiency in thymidine phosphorylase and a subsequent systemic accumulation of thymidine and 2'-deoxyuridine. Erythrocyte-encapsulated thymidine phosphorylase (EE-TP) is under clinical development as an enzyme replacement therapy for MNGIE. Bioanalytical methods were developed according to regulatory guidelines for the quantification of thymidine and 2'-deoxyuridine in plasma and urine using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for supporting the pharmacodynamic evaluation of EE-TP. Samples were deproteinized with 5% perchloric acid (v/v) and the supernatants analyzed using a Hypercarb column (30 × 2.1 mm, 3 µm), with mobile phases of 0.1% formic acid in methanol and 0.1% formic acid in deionized water. Detection was conducted using an ion-spray interface running in positive mode. Isotopically labelled thymidine and 2'-deoxyuridine were used as internal standards. Calibration curves for both metabolites showed linearity (r > 0.99) in the concentration ranges of 10-10,000 ng/mL for plasma, and 1-50 µg/mL for urine, with method analytical performances within the acceptable criteria for quality control samples. The plasma method was successfully applied to the diagnosis of two patients with MNGIE and the quantification of plasma metabolites in three patients treated with EE-TP

    Massive pulmonary embolism

    Get PDF
    • …
    corecore