32 research outputs found
Molecular profiling of biliary tract cancers reveals distinct genomic landscapes between circulating and tissue tumor DNA
Biliary tract cancers (BTCs) are heterogeneous malignancies with dismal prognosis due to tumor aggressiveness and poor response to limited current therapeutic options. Tumor exome profiling has allowed to successfully establish targeted therapeutic strategies in the clinical management of cholangiocarcinoma (CCA). Still, whether liquid biopsy profiling could inform on BTC biology and patient management is unknown. In order to test this and generate novel insight into BTC biology, we analyzed the molecular landscape of 128 CCA patients, using a 394-gene NGS panel (Foundation Medicine). Among them, 32 patients had matched circulating tumor (ct) DNA and tumor DNA samples, where both samples were profiled. In both tumor and liquid biopsies, we identified an increased frequency of alterations in genes involved in genome integrity or chromatin remodeling, including ARID1A (15%), PBRM1 (9%), and BAP1 (14%), which were validated using an in-house-developed immunohistochemistry panel. ctDNA and tumor DNA showed variable concordance, with a significant correlation in the total number of detected variants, but some heterogeneity in the detection of actionable mutations. FGFR2 mutations were more frequently identified in liquid biopsies, whereas KRAS alterations were mostly found in tumors. All IDH1 mutations detected in tumor DNA were also identified in liquid biopsies. These findings provide novel insights in the concordance between the tumor and liquid biopsies genomic landscape in a large cohort of patients with BTC and highlight the complementarity of both analyses when guiding therapeutic prescription
Nut production in Bertholletia excelsa across a logged forest mosaic: implications for multiple forest use
Although many examples of multiple-use forest management may be found in tropical smallholder systems, few studies provide empirical support for the integration of selective timber harvesting with non-timber forest product (NTFP) extraction. Brazil nut (Bertholletia excelsa, Lecythidaceae) is one of the world’s most economically-important NTFP species extracted almost entirely from natural forests across the Amazon Basin. An obligate out-crosser, Brazil nut flowers are pollinated by large-bodied bees, a process resulting in a hard round fruit that takes up to 14 months to mature. As many smallholders turn to the financial security provided by timber, Brazil nut fruits are increasingly being harvested in logged forests. We tested the influence of tree and stand-level covariates (distance to nearest cut stump and local logging intensity) on total nut production at the individual tree level in five recently logged Brazil nut concessions covering about 4000 ha of forest in Madre de Dios, Peru. Our field team accompanied Brazil nut harvesters during the traditional harvest period (January-April 2012 and January-April 2013) in order to collect data on fruit production. Three hundred and ninety-nine (approximately 80%) of the 499 trees included in this study were at least 100 m from the nearest cut stump, suggesting that concessionaires avoid logging near adult Brazil nut trees. Yet even for those trees on the edge of logging gaps, distance to nearest cut stump and local logging intensity did not have a statistically significant influence on Brazil nut production at the applied logging intensities (typically 1–2 timber trees removed per ha). In one concession where at least 4 trees ha-1 were removed, however, the logging intensity covariate resulted in a marginally significant (0.09) P value, highlighting a potential risk for a drop in nut production at higher intensities. While we do not suggest that logging activities should be completely avoided in Brazil nut rich forests, when a buffer zone cannot be observed, low logging intensities should be implemented. The sustainability of this integrated management system will ultimately depend on a complex series of socioeconomic and ecological interactions. Yet we submit that our study provides an important initial step in understanding the compatibility of timber harvesting with a high value NTFP, potentially allowing for diversification of forest use strategies in Amazonian Perù
Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial
Background Some high-income countries have deployed fourth doses of COVID-19 vaccines, but the clinical need, effectiveness, timing, and dose of a fourth dose remain uncertain. We aimed to investigate the safety, reactogenicity, and immunogenicity of fourth-dose boosters against COVID-19.Methods The COV-BOOST trial is a multicentre, blinded, phase 2, randomised controlled trial of seven COVID-19 vaccines given as third-dose boosters at 18 sites in the UK. This sub-study enrolled participants who had received BNT162b2 (Pfizer-BioNTech) as their third dose in COV-BOOST and randomly assigned them (1:1) to receive a fourth dose of either BNT162b2 (30 µg in 0·30 mL; full dose) or mRNA-1273 (Moderna; 50 µg in 0·25 mL; half dose) via intramuscular injection into the upper arm. The computer-generated randomisation list was created by the study statisticians with random block sizes of two or four. Participants and all study staff not delivering the vaccines were masked to treatment allocation. The coprimary outcomes were safety and reactogenicity, and immunogenicity (antispike protein IgG titres by ELISA and cellular immune response by ELISpot). We compared immunogenicity at 28 days after the third dose versus 14 days after the fourth dose and at day 0 versus day 14 relative to the fourth dose. Safety and reactogenicity were assessed in the per-protocol population, which comprised all participants who received a fourth-dose booster regardless of their SARS-CoV-2 serostatus. Immunogenicity was primarily analysed in a modified intention-to-treat population comprising seronegative participants who had received a fourth-dose booster and had available endpoint data. This trial is registered with ISRCTN, 73765130, and is ongoing.Findings Between Jan 11 and Jan 25, 2022, 166 participants were screened, randomly assigned, and received either full-dose BNT162b2 (n=83) or half-dose mRNA-1273 (n=83) as a fourth dose. The median age of these participants was 70·1 years (IQR 51·6–77·5) and 86 (52%) of 166 participants were female and 80 (48%) were male. The median interval between the third and fourth doses was 208·5 days (IQR 203·3–214·8). Pain was the most common local solicited adverse event and fatigue was the most common systemic solicited adverse event after BNT162b2 or mRNA-1273 booster doses. None of three serious adverse events reported after a fourth dose with BNT162b2 were related to the study vaccine. In the BNT162b2 group, geometric mean anti-spike protein IgG concentration at day 28 after the third dose was 23 325 ELISA laboratory units (ELU)/mL (95% CI 20 030–27 162), which increased to 37 460 ELU/mL (31 996–43 857) at day 14 after the fourth dose, representing a significant fold change (geometric mean 1·59, 95% CI 1·41–1·78). There was a significant increase in geometric mean anti-spike protein IgG concentration from 28 days after the third dose (25 317 ELU/mL, 95% CI 20 996–30 528) to 14 days after a fourth dose of mRNA-1273 (54 936 ELU/mL, 46 826–64 452), with a geometric mean fold change of 2·19 (1·90–2·52). The fold changes in anti-spike protein IgG titres from before (day 0) to after (day 14) the fourth dose were 12·19 (95% CI 10·37–14·32) and 15·90 (12·92–19·58) in the BNT162b2 and mRNA-1273 groups, respectively. T-cell responses were also boosted after the fourth dose (eg, the fold changes for the wild-type variant from before to after the fourth dose were 7·32 [95% CI 3·24–16·54] in the BNT162b2 group and 6·22 [3·90–9·92] in the mRNA-1273 group).Interpretation Fourth-dose COVID-19 mRNA booster vaccines are well tolerated and boost cellular and humoral immunity. Peak responses after the fourth dose were similar to, and possibly better than, peak responses after the third dose
MT2A is an early predictive biomarker of response to chemotherapy and a potential therapeutic target in osteosarcoma
International audienceOsteosarcoma is the most prevalent primary bone malignancy in children and young adults. Resistance to chemotherapy remains a key challenge for effective treatment of patients with osteosarcoma. The aim of the present study was to investigate the preventive role of metallothionein-2A (MT2A) in response to cytotoxic effects of chemotherapy. A panel of human and murine osteosarcoma cell lines, modified for MT2A were evaluated for cell viability, and motility (wound healing assay). Cell-derived xenograft models were established in mice. FFPE tumour samples were assessed by IHC. In vitro experiments indicated a positive correlation between half-maximal inhibitory concentration (IC50) for drugs in clinical practice, and MT2A mRNA level. This reinforced our previously reported correlation between MT2A mRNA level in tumour samples at diagnosis and overall survival in patients with osteosarcoma. In addition, MT2A/MT2 silencing using shRNA strategy led to a marked reduction of IC50 values and to enhanced cytotoxic effect of chemotherapy on primary tumour. Our results show that MT2A level could be used as a predictive biomarker of resistance to chemotherapy, and provide with preclinical rational for MT2A targeting as a therapeutic strategy for enhancing anti-tumour treatment of innate chemo-resistant osteosarcoma cells
Cyr61 silencing reduces vascularization and dissemination of osteosarcoma tumors
International audienceOsteosarcoma is the most prevalent primary pediatric cancer-related bone disease. These tumors frequently develop resistance to chemotherapy and are highly metastatic, leading to poor outcome. Thus, there is a need for new therapeutic strategies that can prevent cell dissemination. We previously showed that CYR61/CCN1 expression in osteosarcoma cells is correlated to aggressiveness both in vitro and in vivo in mouse models, as well as in patients. In this study, we found that CYR61 is a critical contributor to the vascularization of primary tumor. We demonstrate that silencing CYR61, using lentiviral transduction, leads to a significant reduction in expression level of pro-angiogenic markers such as VEGF, FGF2, PECAM and angiopoietins concomitantly to an increased expression of major anti-angiogenic markers such as thrombospondin-1 and SPARC. Matrix metalloproteinase-2 family member expression, a key pathway in osteosarcoma metastatic capacity was also downregulated when CYR61 was downregulated in osteosarcoma cells. Using a metastatic murine model, we show that CYR61 silencing in osteosarcoma cells results in reduced tumor vasculature and slows tumor growth compared with control. We also find that microvessel density correlates with lung metastasis occurrence and that CYR61 silencing in osteosarcoma cells limits the number of metastases. Taken together, our data indicate that CYR61 silencing can blunt the malignant behavior of osteosarcoma tumor cells by limiting primary tumor growth and dissemination process. INTRODUCTION Osteosarcoma is a highly vascular and extremely destructive bone malignancy that mainly affects children and young adults. It represents the most frequent pediatric cancer-related disease. Despite the introduction, during the 70 s, of aggressive multi-agent chemotherapy in addition to tumor ablation surgery, the long-term survival (45 years) increased from 10-60% for patients with localized primary tumors, but to o 30% for patients presenting metastases at initial diagnosis. Nowadays, knowledge of the mechanisms underlying osteosarcoma metastasis is quite limited. Thus, in order to improve the clinical outcomes for patients with poor prognosis and to manage primary osteosar-coma by preventing development of metastatic disease, it is imperative to find new approaches to block the metastasis process. Degradation of the extracellular matrix, facilitated by the action of matrix metalloproteinases (MMPs), is a prerequisite of tumor invasion and metastasis in a variety of cancers including osteosarcoma. MMP-2 and MMP-9 have been repetitively implicated in osteosarcoma cell invasion, 1-3 and increased expression of membrane type-1 MMP correlated with decreased overall survival. 4 A correlation was recently reported between the expression of the extracellular MMP inducer EMMPRIN (CD147) and vascular endothelial growth factor (VEGF) in osteosarcoma
Coadministration of nanosystems of short silencing RNAs targeting oestrogen receptor α and anti-oestrogen synergistically induces tumour growth inhibition in human breast cancer xenografts
International audienceThe suppression of oestrogen receptor α (ERα) functions by silencing RNAs in association with or not with anti-oestrogens (AEs) both in vitro and in breast cancer cell xenografts was assessed. In vitro, a prolonged decrease in ERα protein expression and an enhanced AE-induced inhibition of ERα-mediated transcription, together with antiproliferative activity, were observed. Incorporation of ERα-siRNAs in pegylated nanocapsules (NC) was achieved; and their intravenous injections in MCF-7 xenografts, in contrast to scramble siRNA containing NCs, lead to decrease in ERα protein content and Ki67 labelling in tumour cells. The pure AE RU58668 (RU) both free and entrapped in stealth nanospheres (NS) at very low concentration (8 μg/kg/week) had no effect on tumour growth evolution. However, coinjection of the two nanocarriers potentiated the decrease in ERα protein, concomitantly with decreasing tumour vasculature and glucose transporter-1. These data support that the targeted delivery of ERα-siRNA in breast tumours potentiates the inhibition of E-induced proliferative activity by encapsulated AE through enhanced anti-vascular activity. In the hormone-independent MDA-MB-231 xenograft model, RU-NS at 4 mg/kg/week induce also a strong tumour vascular normalisation. Together, these findings suggest that the anti-oestrogen activity of RU as well as that of targeted ERα-siRNA leads to anti-angiogenic activity. Their delivery in stealth nanocarriers may constitute a new anti-cancer therapeutic strategy in solid tumours
The IGR-CaP1 Xenograft Model Recapitulates Mixed Osteolytic/Blastic Bone Lesions Observed in Metastatic Prostate Cancer12
Bone metastases have a devastating impact on quality of life and bone pain in patients with prostate cancer and decrease survival. Animal models are important tools in investigating the pathogenesis of the disease and in developing treatment strategies for bone metastases, but few animal models recapitulate spontaneous clinical bone metastatic spread. In the present study, IGR-CaP1, a new cell line derived from primary prostate cancer, was stably transduced with a luciferase-expressing viral vector to monitor tumor growth in mice using bioluminescence imaging. The IGR-CaP1 tumors grew when subcutaneously injected or when orthotopically implanted, reconstituted the prostate adenocarcinoma with glandular acini-like structures, and could disseminate to the liver and lung. Bone lesions were detected using bioluminescence imaging after direct intratibial or intracardiac injections. Anatomic bone structure assessed using high-resolution computed tomographic scans showed both lytic and osteoblastic lesions. Technetium Tc 99m methylene diphosphonate micro single-photon emission computed tomography confirmed the mixed nature of the lesions and the intensive bone remodeling. We also identified an expression signature for responsiveness of IGR-CaP1 cells to the bone microenvironment, namely expression of CXCR4, MMP-9, Runx2, osteopontin, osteoprotegerin, ADAMTS14, FGFBP2, and HBB. The IGR-CaP1 cell line is a unique model derived from a primary tumor, which can reconstitute human prostate adenocarcinoma in animals and generate experimental bone metastases, providing a novel means for understanding the mechanisms of bone metastasis progression and allowing preclinical testing of new therapies