13 research outputs found

    Grid services for the MAGIC experiment

    Full text link
    Exploring signals from the outer space has become an observational science under fast expansion. On the basis of its advanced technology the MAGIC telescope is the natural building block for the first large scale ground based high energy gamma-ray observatory. The low energy threshold for gamma-rays together with different background sources leads to a considerable amount of data. The analysis will be done in different institutes spread over Europe. Therefore MAGIC offers the opportunity to use the Grid technology to setup a distributed computational and data intensive analysis system with the nowadays available technology. Benefits of Grid computing for the MAGIC telescope are presented.Comment: 5 pages, 1 figures, to be published in the Proceedings of the 6th International Symposium ''Frontiers of Fundamental and Computational Physics'' (FFP6), Udine (Italy), Sep. 26-29, 200

    The MAGIC Experiment and Its First Results

    Full text link
    With its diameter of 17m, the MAGIC telescope is the largest Cherenkov detector for gamma ray astrophysics. It is sensitive to photons above an energy of 30 GeV. MAGIC started operations in October 2003 and is currently taking data. This report summarizes its main characteristics, its rst results and its potential for physics.Comment: 6 pages, 3 figures, to be published in the Proceedings of the 6th International Symposium ''Frontiers of Fundamental and Computational Physics'' (FFP6), Udine (Italy), Sep. 26-29, 200

    MAGIC observations of very high energy gamma-rays from HESS J1813-178

    Get PDF
    Recently, the HESS collaboration has reported the detection of gamma-ray emission above a few hundred GeV from eight new sources located close to the Galactic Plane. The source HESS J1813-178 has sparked particular interest, as subsequent radio observations imply an association with SNR G12.82-0.02. Triggered by the detection in VHE gamma-rays, a positionally coincident source has also been found in INTEGRAL and ASCA data. In this Letter we present MAGIC observations of HESS J1813-178, resulting in the detection of a differential gamma-ray flux consistent with a hard-slope power law, described as dN/(dA dt dE) = (3.3+/-0.5)*10^{-12} (E/TeV)^{-2.1+/-0.2} cm^(-2)s^(-1)TeV^(-1). We briefly discuss the observational technique used, the procedure implemented for the data analysis, and put this detection in the perspective of multifrequency observations.Comment: Accepted by ApJ Letter

    Variable Very High Energy Gamma-ray Emission from the Microquasar LS I +61 303

    Get PDF
    Microquasars are binary star systems with relativistic radio-emitting jets. They are potential sources of cosmic rays and laboratories for elucidating the physics of relativistic jets. Here we report the detection of variable gamma-ray emission above 100 gigaelectron volts from the microquasar LS I +61 303. Six orbital cycles were recorded. Several detections occur at a similar orbital phase, suggesting the emission is periodic. The strongest gamma-ray emission is not observed when the two stars are closest to one another, implying a strong orbital modulation of the emission or the absorption processes.Comment: 11 pages with 4 figure

    Variable Very High Energy Gamma-ray Emission from the Microquasar LS I +61 303

    Get PDF
    Microquasars are binary star systems with relativistic radio-emitting jets. They are potential sources of cosmic rays and laboratories for elucidating the physics of relativistic jets. Here we report the detection of variable gamma-ray emission above 100 gigaelectron volts from the microquasar LS I +61 303. Six orbital cycles were recorded. Several detections occur at a similar orbital phase, suggesting the emission is periodic. The strongest gamma-ray emission is not observed when the two stars are closest to one another, implying a strong orbital modulation of the emission or the absorption processes.Comment: 11 pages with 4 figure

    Observation of Gamma Rays from the Galactic Center with the MAGIC Telescope

    Get PDF
    Recently, the Galactic Center has been reported to be a source of very high energy (VHE) gamma-rays by the VERITAS, CANGAROO and HESS experiments. The energy spectra as measured by these experiments show substantial differences. In this Letter we present MAGIC observations of the Galactic Center, resulting in the detection of a differential gamma-ray flux consistent with a steady, hard-slope power law, described as dN/(dA dt dE) = (2.9+/-0.6)*10^{-12} (E/TeV)^{-2.2+/-0.2} cm^{-2}s^{-1}TeV^{-1}. The gamma-ray source is centered at (Ra, Dec)=(17h 45m 20s, -29deg 2'. This result confirms the previous measurements by the HESS experiment and indicates a steady source of TeV gamma-rays. We briefly describe the observational technique used, the procedure implemented for the data analysis, and discuss the results in the perspective of different models proposed for the acceleration of the VHE gamma-rays.Comment: ApJL submitte

    Observation of VHE Gamma Radiation from HESS J1834-087/W41 with the MAGIC Telescope

    Get PDF
    Recently, the HESS array has reported the detection of gamma-ray emission above a few hundred GeV from eight new sources located close to the Galactic Plane. The source HESS J1834-087 is spatially coincident with SNR G23.3-0.3 (W41). Here we present MAGIC observations of this source, resulting in the detection of a differential gamma-ray flux consistent with a power law, described as dN/(dA dt dE) = (3.7 +/- 0.6)*10^(-12) (E/TeV)^(-2.5 +/- 0.2) \ cm^(-2)s^(-1)TeV^(-1). We confirm the extended character of this flux. We briefly discuss the observational technique used, the procedure implemented for the data analysis, and put this detection in the perspective of the molecular environment found in the region of W41. We present 13CO and 12CO emission maps showing the existence of a massive molecular cloud in spatial superposition with the MAGIC detection.Comment: Accepted by ApJ Letter
    corecore