36 research outputs found
Finitely generated infinite simple groups of infinite square width and vanishing stable commutator length
It is shown that there exist finitely generated infinite simple groups of
infinite commutator width and infinite square width on which there exists no
stably unbounded conjugation-invariant norm, and in particular stable
commutator length vanishes. Moreover, a recursive presentation of such a group
with decidable word and conjugacy problems is constructed.Comment: v4: 41 pages, 6 figures rescaled at 120%; references updated, typos
corrected, other minor corrections. v3: minor changes to the title, text and
figures. v2: 41 pages, 6 figures; correction: Ore's conjecture was proved in
2008; 2 references added. v1: 40 pages, 6 figure
Triangulations and volume form on moduli spaces of flat surfaces
In this paper, we are interested in flat metric structures with conical
singularities on surfaces which are obtained by deforming translation surface
structures. The moduli space of such flat metric structures can be viewed as
some deformation of the moduli space of translation surfaces. Using geodesic
triangulations, we define a volume form on this moduli space, and show that, in
the well-known cases, this volume form agrees with usual ones, up to a
multiplicative constant.Comment: 42 page
Qubit-Qutrit Separability-Probability Ratios
Paralleling our recent computationally-intensive (quasi-Monte Carlo) work for
the case N=4 (quant-ph/0308037), we undertake the task for N=6 of computing to
high numerical accuracy, the formulas of Sommers and Zyczkowski
(quant-ph/0304041) for the (N^2-1)-dimensional volume and (N^2-2)-dimensional
hyperarea of the (separable and nonseparable) N x N density matrices, based on
the Bures (minimal monotone) metric -- and also their analogous formulas
(quant-ph/0302197) for the (non-monotone) Hilbert-Schmidt metric. With the same
seven billion well-distributed (``low-discrepancy'') sample points, we estimate
the unknown volumes and hyperareas based on five additional (monotone) metrics
of interest, including the Kubo-Mori and Wigner-Yanase. Further, we estimate
all of these seven volume and seven hyperarea (unknown) quantities when
restricted to the separable density matrices. The ratios of separable volumes
(hyperareas) to separable plus nonseparable volumes (hyperareas) yield
estimates of the separability probabilities of generically rank-six (rank-five)
density matrices. The (rank-six) separability probabilities obtained based on
the 35-dimensional volumes appear to be -- independently of the metric (each of
the seven inducing Haar measure) employed -- twice as large as those (rank-five
ones) based on the 34-dimensional hyperareas. Accepting such a relationship, we
fit exact formulas to the estimates of the Bures and Hilbert-Schmidt separable
volumes and hyperareas.(An additional estimate -- 33.9982 -- of the ratio of
the rank-6 Hilbert-Schmidt separability probability to the rank-4 one is quite
clearly close to integral too.) The doubling relationship also appears to hold
for the N=4 case for the Hilbert-Schmidt metric, but not the others. We fit
exact formulas for the Hilbert-Schmidt separable volumes and hyperareas.Comment: 36 pages, 15 figures, 11 tables, final PRA version, new last
paragraph presenting qubit-qutrit probability ratios disaggregated by the two
distinct forms of partial transpositio
Kick stability in groups and dynamical systems
We consider a general construction of ``kicked systems''. Let G be a group of
measure preserving transformations of a probability space. Given its
one-parameter/cyclic subgroup (the flow), and any sequence of elements (the
kicks) we define the kicked dynamics on the space by alternately flowing with
given period, then applying a kick. Our main finding is the following stability
phenomenon: the kicked system often inherits recurrence properties of the
original flow. We present three main examples. 1) G is the torus. We show that
for generic linear flows, and any sequence of kicks, the trajectories of the
kicked system are uniformly distributed for almost all periods. 2) G is a
discrete subgroup of PSL(2,R) acting on the unit tangent bundle of a Riemann
surface. The flow is generated by a single element of G, and we take any
bounded sequence of elements of G as our kicks. We prove that the kicked system
is mixing for all sufficiently large periods if and only if the generator is of
infinite order and is not conjugate to its inverse in G. 3) G is the group of
Hamiltonian diffeomorphisms of a closed symplectic manifold. We assume that the
flow is rapidly growing in the sense of Hofer's norm, and the kicks are
bounded. We prove that for a positive proportion of the periods the kicked
system inherits a kind of energy conservation law and is thus superrecurrent.
We use tools of geometric group theory and symplectic topology.Comment: Latex, 40 pages, revised versio
Shapes of polyhedra, mixed volumes and hyperbolic geometry
We generalize to higher dimensions the BavardâGhys construction of the hyperbolic metric on the space of polygons with fixed directions of edges. The space of convex d -dimensional polyhedra with fixed directions of facet normals has a decomposition into type cones that correspond to different combinatorial types of polyhedra. This decomposition is a subfan of the secondary fan of a vector configuration and can be analyzed with the help of Gale diagrams. We construct a family of quadratic forms on each of the type cones using the theory of mixed volumes. The AlexandrovâFenchel inequalities ensure that these forms have exactly one positive eigenvalue. This introduces a piecewise hyperbolic structure on the space of similarity classes of polyhedra with fixed directions of facet normals. We show that some of the dihedral angles on the boundary of the resulting cone-manifold are equal to Ï/2